Элемент sn: Олово. Свойства, применение, химический состав, марки

Олово. Свойства, применение, химический состав, марки



Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото







Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото






Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото








Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото








Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Хром

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Рений

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Прецизионные сплавы

Продукция

Описание

Магнитомягкие

Магнитотвердые

С заданным ТКЛР

С заданной упругостью

С высоким эл. сопротивлением

Сверхпроводники

Термобиметаллы






Олово (Sn) является коррозионностойким нетоксичным легкоплавким металлом, что определяет его применение в пищевой и электронной промышленности. Помимо этого Sn является составным компонентов многих сплавов. На странице представлено описание данного материала: физические и химические свойства, области применения, марки, виды продукции.

Основные сведения

Олово (Sn, Stannum) — химический элемент с атомным номером 50 в периодической системе. Относится к группе легких металлов; ковкий и пластичный материал. Имеет серебристо-белый цвет с блестящей поверхностью. Плотность составляет 7,31 г/см3, температура плавления tпл. = 231,9 °С, температура кипения tкип. = 2620 °С.

Металл может существовать в трех модификациях в зависимости от температуры:

  • α-Sn (серое олово) — температура ниже 13,2 °С; кубическая кристаллическая решетка типа алмаза;
  • β-Sn (белое олово) — температура выше 13,2 °С; тетрагональная кристаллическая решетка;
  • γ-Sn — температура 161-232 °С.

Стоит отметить, что при температуре окружающей среды ниже 13,2 °С олово изменяет свое фазовое состояние и переходит в α-модификацию. При этом оно трескается и превращается в порошок. Наиболее высокая скорость перехода наблюдается при температуре -33 °С. Данное явление получило название “оловянная чума”.

В земной коре содержание Sn по разным данным составляет от 2·10-4 до 8·10-3% по массе. Данный металл занимает 47-е место по распространенности в земной коре. Основным минералом, содержащим олово, является касситерит (оловянный камень), в состав которого входит до 78,8% Sn. Лидерами по запасам рассматриваемого химического элемента являются Китай, Индонезия, Малайзия и Таиланд.

История открытия

Описываемый металл, издревле известный человечеству. Считается, что его использование началось еще в IV тысячелетии до н.э. Наибольшее распространение в древнем мире пришлось на бронзовый век (приблизительно XXXV-XI вв. до н.э.), так как Sn является одним из основных компонентов оловянистой бронзы. Название “олово” закрепилось за рассматриваемым химическим элементом в IV в.

Свойства олова

Физические и механические свойства

СвойствоЗначение
Атомный номер50
Атомная масса, а.е.м118,7
Радиус атома, пм162
Плотность, г/см³7,31
Теплопроводность, Вт/(м·K)66,8
Температура плавления, °С231,9
Температура кипения, °С2620
Теплота плавления, кДж/моль7,07
Теплота испарения, кДж/моль296
Молярный объем, см³/моль16,3
Группа металловЛегкий металл

Химические свойства

СвойствоЗначение
Ковалентный радиус, пм141
Радиус иона, пм(+4e) 71 (+2) 93
Электроотрицательность (по Полингу)1,96
Электродный потенциал-0,136
Степени окисления+4, +2
Энергия ионизации, кДж/моль (эВ)708,2 (7,34)

Марки олова

В промышленных масштабах металл выпускается нескольких марок:

  • ОВЧ-000 — олово высокой чистоты, содержание Sn составляет 99,999%; выпускается в виде чушек и прутков.
  • О1пч, О1 — содержание Sn составляет 99,915% и 99,900% соответственно; выпускается в виде чушек, прутков, проволоки.
  • О2 — 99,565% Sn; полуфабрикаты: чушка, проволока, пруток.
  • О3 — в составе 98,49% Sn, самая весомая примесь Pb — 1,0%; поставляется в виде чушек.
  • О4 — олово с самым высоким содержанием примесей, общее количество которых составляет 3,51%, массовая доля Sn — 96,43%; выпускается в виде чушек.

Достоинства / недостатки

    Достоинства:

  • имеет хорошую коррозионную стойкость в среде органических кислот и солей;
  • не подвержен негативному влиянию серы, содержащейся в пластике;
  • нетоксичен, что позволяет использование в пищевой промышленности.
    Недостатки:

  • имеет низкую температуру плавления;
  • склонность к “оловянной чуме”.

Области применения олова

Sn имеет несколько основных направлений применения. Благодаря своей нетоксичности и стойкости к коррозии в среде органических солей и кислот данный металл получил распространение в пищевой промышленности. Его наносят в виде покрытий на различные изделия, имеющие контакт с продуктами питания. Оловом также покрывают медные жилы проводов. Оно защищает Cu от негативного воздействия S, содержащейся в резиновой изоляции.

В производстве электронных приборов, где очень часто для соединения элементов применяется пайка, олово используется в качестве припоя.

Sn является составляющей большого количества сплавов с медью, цинком, медью и цинком, медью и сурьмой. Среди наиболее известных можно выделить баббиты, бронзы.

Продукция из олова

Современная промышленность выпускает разнообразную продукцию из олова. Наиболее распространены чушки, проволока, прутки и аноды.

Достаточное широкое применение в промышленности получили оловянные аноды, которые используются при лужении поверхностей различных изделий. Оловянная проволока и прутки часто используются в качестве припоев в электронике при пайке. Оловянные чушки выступают исходным материалом для производства остальных полуфабрикатов, а также используются при выплавке сплавов, содержащих олово.

Элементы: Кричащий металл – олово


Олово известно человеку с самых древних времён. О нём есть упоминание в Библии. Так как олово и медь были открыты много раньше железа, их сплав – бронза, возможно, самый первый «искусственный» материал, сделанный человеком. Относительно чистое олово было получено в 12 веке.




Олово (Sn) в Таблице Менделеева


До этого оно всегда содержало какое-то количество свинца. Слово олово – славянского происхождения. Международное название этого элемента – stannum – из латинского языка и обозначается символом Sn. В Таблице Менделеева олово стоит под номером 50, c атомной массой 118, 710 а. е. м. При нормальных условиях это пластичный и легкоплавкий металл серебристо-белого цвета.




При нормальных условиях олово — мягкий, пластичный металл серебристо-белого цвета.


Несмотря на то, что олово известно с незапамятных времён, его аллотропные разновидности были открыты относительно недавно. Аллотропией (от др.-греч. ἄλλος «другой» + τρόπος «свойство»)  в химии и геохимии называют способность одного химического элемента при определённых условиях являться в двух и более видоизменных формах, иногда настолько отличающихся друг от друга по свойствам, что их принимают за  разные вещества. Олово тому ярчайший пример, а незнание свойств его аллотропных разновидностей  приводило иногда к трагическим последствиям. В обычных условиях олово существует в виде т.н. β-модификации (белое олово или β-Sn), устойчивой выше +13,2 °C. Плотность β-Sn равна 7,2 г/см3. При сгибании прутков этой разновидности слышен характерный хруст, который называют «оловянный крик», издаваемый от взаимного трения кристаллов. При охлаждении белое олово переходит в α-модификацию (серое олово или α-Sn). Серое олово образует кристаллы со структурой похожей на алмаз.  Но, при этом,  переход β-Sn в α-Sn сопровождается увеличением удельного объёма на 25 %, и, как следствие, уменьшением плотности α-Sn до 5,7 г/см3, что приводит к рассыпанию олова в порошок. При температуре −33 °C скорость превращений максимальна. Более того, соприкосновение серого и белого олова приводит к «заражению» последнего и его рассыпанию. В 1911 году совокупность этих явлений немецкий химик и минералог Эрнст Коген назвал «оловянной чумой». В 1912 году из-за «оловянной чумы» погибла экспедиция Роберта Скотта к Южному полюсу, которая осталась без горючего из-за того, что швы топливных баков были запаяны белым оловом, но в условиях низких температур оно перешло в серую разновидность и рассыпалось.


Олово — редкий рассеянный элемент, по распространённости в земной коре  занимает 47-е место со средним содержанием 8 г/т.  Главный промышленный минерал олова — касситерит SnO2.




Кристаллы касситерита SnO2, разм. 5х4,5х4 см. Провинция Юньнань, Китай.


Второстепенное значение имеют: станнин Cu2FeSnS4,  тиллит PbSnS2 и другие минералы. Основные мировые месторождения олова находятся в Китае, Индонезии, Бразилии, России, Боливии.   В России запасы оловянных руд расположены на Дальнем Востоке.


Главные промышленные применения олова — изготовления тары для пищевых продуктов, припои для электроники, подшипниковые сплавы.

Ferroli артикул 46210050 (SN нагревательный элемент 46210050) в БСП (499) 519-03-69


Купить запчасть Ferroli артикул 46210050 (SN нагревательный элемент 46210050) Вы можете в компании БСП тел. (499) 519-03-79, моб. (915) 481-31-32. Обращаем Ваше внимание, что запчасти к котельному оборудованию НАДЛЕЖАЩЕГО качества не подлежат возврату или обмену. Поэтому для корректного подбора артикула запчасти Ferroli мы настоятельно рекомендуем Вам связаться с нашими специалистами, которые подберут запчасть по разрывной схеме котла (горелки). Необходимую Вам запчасть Ferroli 46210050 (SN нагревательный элемент 46210050) Вы можете оплатить как наличными в нашем офисе-складе, так и безналичным расчетом.

Уважаемые Пользователи!

Убедительная просьба НЕ ОСУЩЕСТВЛЯТЬ каких-либо действий по оплате запчастей, а также услуг по их доставке, до телефонного разговора со специалистом ООО «БСП» в ходе которого будет окончательно определены артикул товара и срок его поставки (в случае отсутствия на складе), а так же выбрана транспортная компания, которая будет осуществлять доставку в регион (если она необходима). «

Звоните нам по телефонам: (499) 519-03-69, 192-81-04 и наши специалисты ответят на все Ваши вопросы!
Так же, Вы можете воспользоваться нашей формой обратной связи Консультация нашего специалиста!

Олово в волосах

Определение концентрации в волосах металла олова, используемое для диагностики интоксикации им.

Синонимы английские

Sn, Stannum, Tin.

Метод исследования

Масс-спектрометрия с индуктивно-связанной плазмой.

Единицы измерения

Мкг/г (микрограмм на грамм).

Какой биоматериал можно использовать для исследования?

Волосы.

Как правильно подготовиться к исследованию?

Подготовки не требуется.

Общая информация об исследовании

Многие неорганические ионы могут быть определены в организме человека. Некоторые из них являются абсолютно необходимыми для нормального метаболизма элементами, как, например, натрий, калий, цинк, селен и йод. Другие (ртуть, кадмий, свинец) не выполняют никаких функций и даже, наоборот, оказывают токсическое воздействие при накоплении в высокой концентрации. Для диагностики острой или хронической интоксикации организма используют анализ на наличие того или иного металла (микроэлемента).

Токсичность неорганических ионов зависит от многих факторов, в том числе возраста, пола, физиологического состояния организма, наличия сопутствующих заболеваний, а также пути поступления в организм и дозы. Основными источниками тяжелых металлов и микроэлементов являются пищевые продукты и вода, вдыхаемый воздух, а также в некоторых случаях лекарственные препараты.

Наиболее часто случаи отравления тяжелыми металлами и микроэлементами регистрируются на производстве. Одним из наиболее ярких проявлений токсического воздействия соединений металлов на организм является так называемая металлическая лихорадка. Это гриппоподобное состояние возникает в результате острого воздействия паров оксидов тяжелых металлов на верхние дыхательные пути и наиболее часто наблюдается среди рабочих, занятых на добыче и переработке металлов. Самой частой причиной «металлической лихорадки» является отравление оксидами цинка, магния, кобальта и меди.

Несмотря на то что клиническая картина отравления тяжелыми металлами и микроэлементами несколько отличается в зависимости от природы и химической структуры металла, определить элемент, вызвавший заболевания, на основании только лишь клинических признаков не представляется возможным.

Олово — химический элемент, цветной металл. Оно не относится к сильно токсичным металлам, но его избыток в организме может сопровождаться неприятными ощущениями. При избыточном поступлении оно накапливается в печени, почках, скелете и мышцах.  Основные проявления интоксикации: головокружения, головные боли, расстройства зрения, раздражение кожи. станиоз (изменения в легких), снижение аппетита, металлический привкус во рту, тошнота, боли в животе, поносы, увеличение печени, повышение уровня трансаминаз в крови, гипергликемия, снижение уровня цинка и меди. Мировое производство олова насчитывает около 3,3 млн т в год, из них более четверти миллиона тонн попадает в атмосферу в виде выхлопных газов от транспорта. Оно применяется при нанесении защитных покрытий на изделия, в промышленности для производства белой жести, при изготовлении трубопроводов, подшипников, свинцово-оловянных аккумуляторов, колоколов, используется в сплавах для бронзы, пьютера, рубинового стекла.

Для диагностики хронического отравления токсическими металлами оптимальной биологической средой является моча. Для диагностики острого отравления тяжелыми металлами предпочтительно использовать кровь. Результаты исследования волос и ногтей менее надежны, чем исследование крови и мочи. Это связано с тем, что придатки кожи способны накапливать металлы из внешней среды, поэтому концентрация металлов в волосах и ногтях не всегда отражает их концентрацию в организме.

При интерпретации результата исследования следует учитывать некоторые особенности метаболизма токсических металлов в организме. Признаки интоксикации могут наблюдаться и при нормальных (референсных) значениях концентрации.

Для чего используется исследование?

  • Для диагностики интоксикации пациентов с особенностями профессионального и бытового анамнеза.

Когда назначается исследование?

  • При обследовании пациентов, занятых на добыче и переработке тяжелых металлов.

Что означают результаты?

Референсные значения: 0 — 3 мкг/г.

Причины повышения уровня олова:

  • интоксикация.


Скачать пример результата

Также рекомендуется

[06-231] Токсические микроэлементы (Cd, Hg, Pb)

[06-232] Токсические микроэлементы и тяжелые металлы (Hg, Cd, As, Li, Pb, Al)

[06-233] Основные эссенциальные (жизненно необходимые) и токсичные микроэлементы (13 показателей)

[06-234] Комплексный анализ на наличие тяжёлых металлов и микроэлементов (23 показателя)

[06-109] Жирорастворимые витамины (A, D, E, K)

[06-188] Водорастворимые витамины (B1, B5, B6, С)

[06-222] Комплексный анализ крови на ненасыщенные жирные кислоты семейства Омега-3 и Омега-6

[40-422] Комплексная оценка оксидативного стресса (7 параметров)

Кто назначает исследование?

Врач общей практики, профпатолог.

Литература

  • Ford et al. Clinical Toxicology/ M. D. Ford, K. A. Delaney, L. J. Ling, T. Erickson; 1st ed. — W.B. Saunders Company, 2001.
  • Klaassen et al. Casarett and Doull’s Essentials of Toxicology/ C. D. Klaassen, J.B. Watkins III. 1st ed. – MCGraw-Hill, 2004.
  • Fauci et al. Harrison’s Principles of Internal Medicine/A. Fauci, D.  Kasper, D. Longo, E. Braunwald, S. Hauser, J. L. Jameson, J. Loscalzo; 17 ed. — The McGraw-Hill Companies, 2008.
  • Chernecky C. C. Laboratory Tests and Diagnostic Procedures / С.С. Chernecky, В.J. Berger; 5th ed. — Saunder Elsevier, 2008.

Моторные масла API SN, классификация моторных масел API SN

Масла сервисных категорий с SA по SH специалистами Института в настоящее время не оцениваются, поэтому они признаны технически устаревшими. Наиболее совершенным по оценке качества масел для бензиновых двигателей до 2010 года был класс SM. На смену ему пришел API SN, который предъявляет более жесткие требования. Он действует по настоящее время.

Технические характеристики API SN и спецификации

Сервисная категория API SN создавалась с целью повышения степени защиты бензиновых моторов автомобилей от высокотемпературных отложений на поршнях, снижения смолообразования, а также для совместимости с резинотехническими уплотнителями. Требования API SN соответствуют новому стандарту эксплуатационных харак­теристик масла ILSAC GF-5. Это касается повышения топливной экономичности, защиты турбонаддувов, каталитических нейтрализаторов, системы рециркуляции отработавших газов, улучшения моющих и защитных характеристик.

Прошедшие сертификацию смазочные материалы могут работать в двигателях на этанолсодержащем топливе. Кроме того, моторные масла API SN обладают повышенной окислительной стабильностью. Спецификация распространяется на все существующие показатели вязкости SAE по тесту J3000.

Отличия класса API SN от предыдущих спецификаций

Разработка категории SN в классификации API связана с появлением новых требований, которым должны отвечать моторные масла:

  • возможность использования в двигателях, которые работают на биотопливе;
  • снижение процентного содержания фосфора в целях совместимости с системами очистки выхлопных газов;
  • обеспечение повышенной износостойкости двигателя;
  • высокий уровень энергосбережения.

Смазочные материалы с допуском API SN должны быть нейтральны по отношению к материалу установленных в двигателе уплотнительных элементов.

Предыдущая спецификация API SM позиционировалась как энергосберегающий класс (EC). Маловязкий продукт способен снижать расход топлива, что подтверждено проводимыми тестами. Моторное масло API SN заявлено как ресурсосберегающий продукт (RC). Помимо положительного влияния на топливную экономичность оно должно способствовать защите каталитического нейтрализатора и составляющих элементов системы турбонаддува.

Каталог моторных масел ROLF

Tin — Информация об элементе, свойства и использование

Расшифровка:

Химия в ее стихии: олово

(Promo)

Вы слушаете Химию в ее стихии, представленную вам Chemistry World, журналом Королевского химического общества.

(Конец промо)

Крис Смит

Здравствуйте, на этой неделе элемент, который изменил курс промышленности, а также породил бронзовый век. Мы узнаем, почему римляне пришли в Британию и почему ваш орган зимой может необратимо выйти из строя. Но любителям олова следует быть начеку, потому что многое из того, что мы называем оловом, — нет.

Кэтрин Холт

Жестяные банки, оловянная фольга, оловянные свистульки, оловянные солдатики … это то, что приходит на ум, когда мы думаем о олове. И это прискорбно, поскольку жестяные банки на самом деле сделаны из стали; оловянная фольга сделана из алюминия и оловянных свистков …. ну вы поняли. Быть связанным со списком устаревших расходных материалов особенно прискорбно для олова, если учесть, что оно в буквальном смысле изменило цивилизацию! Вы слышали о бронзовом веке? Что ж, некоторые предприимчивые рабочие-металлисты в конце каменного века обнаружили, что добавление небольшого количества олова в расплавленную медь привело к получению нового сплава.Она была тверже, чем медь, но ее было гораздо легче формировать, отливать и точить. Это открытие было настолько революционным, что родился бронзовый век — название, данное любой цивилизации, которая делала инструменты и оружие из этого сплава меди и олова.

Олово было настолько важным, что секреты его производства тщательно охранялись. Древние греки говорили о «Касситеридах» или «Оловянных островах», которые, как полагали, лежали у северо-западного побережья Европы. Эти загадочные острова никогда не были идентифицированы и, вероятно, никогда не существовали.Все, что знали греки, — это то, что олово попало к ним по морю и с северо-запада, и так возникла история о оловянных островах. Вероятно, олово пришло из Северной Испании и из Корнуолла. Фактически, стратегическое значение оловянных рудников Корнуолла считается одной из причин вторжения Римской империи в Британию.

Олово могло сыграть и другую историческую роль — на этот раз в разгроме армии Наполеона в русской кампании 1812 года. Утверждалось, что в суровые холода оловянные пуговицы на солдатской форме рассыпались в порошок, что привело к серьезной потере жизнь от переохлаждения.Правильность этой истории спорна, но превращение олова из блестящего металла в серый порошок при низких температурах — химический факт.

Холодными зимами Северной Европы утрата оловянных органных трубок, когда они начали рассыпаться в пыль, веками была известна как «оловянный вредитель», «оловянная болезнь» или «оловянная проказа». На самом деле этот процесс представляет собой очень простое химическое преобразование одной структурной формы олова — серебристого, металлического «белого олова» или «бета-олова» — в другую — хрупкое неметаллическое «серое олово» или «альфа-олово».Для чистого олова переход происходит при 13,2 ° C, но температура перехода ниже или не происходит вообще, если присутствует достаточно примесей, например, если олово легировано другим металлом.

Таким образом, возникла современная проблема с «оловянными вредителями», поскольку сплавы олово-свинец, используемые для покрытия выводов в электрическом оборудовании, иногда заменяются чистым оловом в связи с новым законодательством по охране окружающей среды. При низких температурах покрытие из металлического бета-олова превращается в непроводящее, хрупкое альфа-олово и падает с выводов. Затем рассыпчатый порошок альфа-олова перемещается внутри оборудования, но, поскольку он не проводит ток, это не вызывает проблем. Однако при более высоких температурах этот порошок альфа-олова снова превращается в проводящее бета-олово, что приводит к коротким замыканиям и всевозможным проблемам.

Чтобы победить «оловянных вредителей», нужно смешивать олово с другими металлами, и в наши дни олово в основном используется для образования сплавов — например, бронзы, олова и припоев. Поскольку олово является наиболее тонально резонансным из всех металлов, оно используется в металлах колоколов и для изготовления органных труб, которые обычно представляют собой смесь олова и свинца в соотношении 50:50.От количества олова обычно зависит тон трубы.

Итак, мы возвращаемся к скромной консервной банке. Банки, хотя и не сделаны из жести, часто покрываются оловом изнутри для предотвращения коррозии. Итак, хотя сейчас может показаться, что олово играет небольшую роль в нашей повседневной жизни, помните, что когда-то оно участвовало в подъеме и падении цивилизаций.

Крис Смит

Итак, это жесть привлекла римлян в Британию — забавно, что я подумал, что это была чудесная погода.Историю Тина рассказала Кэтрин Холт из Калифорнийского университета в Лос-Анджелесе. На следующей неделе вещество, которое заставляет вас видеть красный цвет.

Брайан Клегг

Если вы слушаете этот подкаст на компьютере с традиционным цветным монитором, Европиум улучшит ваше представление о веб-сайте Chemistry World. Когда впервые были разработаны цветные телевизоры, красные пиксели были относительно слабыми, что означало, что весь цветовой спектр должен был оставаться приглушенным. Но люминофор, легированный европием, оказался гораздо лучшим и ярким источником красного цвета и до сих пор присутствует в большинстве сохранившихся мониторов и телевизоров, предшествовавших революции плоских экранов.

Крис Смит

И вы можете услышать от Брайана Клегга, как впервые была использована сила европия и как она была обнаружена на следующей неделе в «Химии в ее элементе». Надеюсь, вы присоединитесь к нам. А пока я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

It’s Elemental — The Element Tin

Что в названии? От англосаксонского слова олово. Атомный символ олова происходит от латинского слова олово, олова.

Сказать что? Олово произносится как ИНН.

Археологические данные свидетельствуют о том, что люди использовали олово не менее 5500 лет. Олово в основном получают из минерала касситерита (SnO 2 ) и извлекают путем обжига касситерита в печи с углеродом. Олово составляет всего около 0,001% земной коры и в основном добывается в Малайзии.

Две аллотропы олова встречаются при комнатной температуре. Первая форма олова называется серым оловом и устойчива при температуре ниже 13 ° C.2 ° С (55,76 ° F). Серого олова мало, если оно вообще есть. При температуре выше 13,2 ° C серое олово медленно превращается во вторую форму олова — белое олово. Белое олово — это нормальная форма металла, имеющая множество применений. К сожалению, белое олово превратится в серое, если его температура упадет ниже 13,2 ° C. Этого изменения можно избежать, если добавить в белое олово небольшое количество сурьмы или висмута.

Олово устойчиво к коррозии и используется в качестве защитного покрытия для других металлов. Консервные банки, вероятно, являются наиболее знакомым примером этого применения.Жестяная банка на самом деле сделана из стали. На внутреннюю и внешнюю стороны банки наносится тонкий слой олова, чтобы сталь не ржавела. Когда-то широко использовавшиеся консервные банки были заменены пластиковыми и алюминиевыми.

Олово используется в процессе Pilkington для производства оконного стекла. В процессе Pilkington расплавленное стекло выливается в ванну с расплавленным оловом. Стекло плавает на поверхности олова и охлаждается, образуя твердое стекло с плоскими параллельными поверхностями. Таким образом производится большая часть оконного стекла, производимого сегодня.

Олово используется для образования многих полезных сплавов. Бронза — это сплав олова и меди. Олово и свинец сплавлены для изготовления олова и припоя. Сплав олова и ниобия используется для изготовления сверхпроводящей проволоки. Типовой металл, легкоплавкий металл, раструб и баббитовый металл — другие примеры сплавов олова.

Соли олова можно распылять на стекло для создания электропроводящих покрытий. Затем их можно использовать для изготовления панельного освещения и лобовых стекол, защищающих от мороза. Фторид олова (SnF 2 ) используется в некоторых типах зубных паст.

Олово (Sn) — химические свойства, воздействие на здоровье и окружающую среду

Олово

Олово — мягкий, податливый серебристо-белый металл. Олово нелегко окисляется и устойчиво к коррозии, поскольку защищено оксидной пленкой. Олово устойчиво к коррозии от дистиллированной морской и мягкой водопроводной воды и может подвергаться воздействию сильных кислот, щелочей и кислотных солей.

Применения

Олово используется для покрытия банок: луженые стальные контейнеры широко используются для консервирования пищевых продуктов.Сплавы олова используются по-разному: в качестве припоя для соединения труб или электрических цепей, олова, раструба, баббита и зубных амальгам. Сплав ниобия с оловом используется для изготовления сверхпроводящих магнитов, оксид олова используется для керамики и в датчиках газа (поскольку он поглощает газ, его электропроводность увеличивается, и это можно контролировать). Оловянная фольга когда-то была обычным упаковочным материалом для пищевых продуктов и лекарств, теперь ее заменила алюминиевая фольга.

Олово в окружающей среде

Оксид олова нерастворим, а руда сильно сопротивляется выветриванию, поэтому количество олова в почвах и природных водах невелико.Концентрация в почвах обычно находится в диапазоне 1-4 ppm, но некоторые почвы содержат менее 0,1 ppm, в то время как торф может содержать до 300 ppm.
Есть несколько оловосодержащих минералов, но только один имеет промышленное значение — касситерит. Основной район добычи полезных ископаемых находится в оловянном поясе, который идет от Китая через Таиланд, Бриму и Малайзию до островов Индонезии. Малайзия производит 40% мирового олова. Другими важными районами добычи олова являются Боливия и Бразилия. Мировое производство превышает 140 единиц.000 тонн в год, а полезные запасы составляют более 4 млн тонн. Производство оловянных концентратов составляет около 130 000 тонн в год.

Олово используется в основном в различных органических веществах. Органические оловянные связи являются наиболее опасными формами олова для человека. Несмотря на опасность, они применяются во многих отраслях промышленности, таких как лакокрасочная промышленность и производство пластмасс, а также в сельском хозяйстве с помощью пестицидов. Количество применений органических веществ олова продолжает расти, несмотря на то, что нам известны последствия отравления оловом.
Действие органических оловянных веществ может быть разным. Они зависят от типа присутствующего вещества и организма, который ему подвергается. Триэтилолово — самое опасное для человека органическое олово. Он имеет относительно короткие водородные связи. Когда водородные связи становятся длиннее, оловянное вещество становится менее опасным для здоровья человека. Люди могут поглощать оловянные связи через пищу, дыхание и через кожу.
Поглощение оловянных связей может вызвать как острые, так и долгосрочные эффекты.

Острые эффекты:
— Раздражение глаз и кожи
— Головные боли
— Боли в животе
— Болезнь и головокружение
— Сильное потоотделение
— Одышка
— Проблемы с мочеиспусканием

Долгосрочные эффекты:
— Депрессии
— Повреждение печени
— Нарушение работы иммунной системы
— Хромосомное повреждение
— Нехватка красных кровяных телец
— Повреждение мозга (вызывающее гнев, нарушения сна, забывчивость и головные боли)

Олово в виде отдельных атомов или молекул не очень токсично для В любом виде организма токсичная форма — это органическая форма.Компоненты органического олова могут сохраняться в окружающей среде в течение длительного времени. Они очень стойкие и не поддаются биологическому разложению. У микроорганизмов есть большие проблемы с расщеплением органических соединений олова, которые накапливались на водных почвах в течение многих лет. Концентрация органических консервов из-за этого продолжает расти.

Органические банки могут распространяться по водным системам при адсорбции на частицах ила. Известно, что они наносят большой вред водным экосистемам, поскольку очень токсичны для грибов, водорослей и фитопланктона.Фитопланктон — очень важное звено в водной экосистеме, поскольку он обеспечивает другие водные организмы кислородом. Это также важная часть водной пищевой цепи.

Существует много различных типов органического олова, которые могут сильно различаться по токсичности. Трибутилоловы являются наиболее токсичными компонентами олова для рыб и грибов, тогда как трифенилолово гораздо более токсично для фитопланктона.
Органические банки, как известно, нарушают рост, размножение, ферментативные системы и режим питания водных организмов.Воздействие в основном происходит в верхнем слое воды, где накапливаются органические соединения олова.

Источники периодической таблицы

Новая страница: олово в воде

Вернуться к периодической таблице элементов .

Факты о олове | Живая наука

Олово — элемент, который, возможно, наиболее известен тем, что он используется в жестяных банках, которые в наши дни почти всегда на самом деле алюминиевые.Даже оригинальные консервные банки, впервые представленные в 1800-х годах, в основном были стальными, покрытыми оловом.

Так что олово может показаться непритязательным, но не маловажным. Этот металл используется для предотвращения коррозии и производства стекла. Чаще всего его находят в смеси или сплавах с другими металлами. Олово, например, в основном состоит из олова.

Источники олова

Олово относительно редко, по данным Геологической службы США, составляя лишь около 2 частей на миллион земной коры. Олово добывается из различных руд, в основном из касситерита (SnO 2 ).Металл получают путем восстановления оксидной руды углем в печи.

Очень мало олова было найдено в Соединенных Штатах, большая его часть — на Аляске и в Калифорнии. По данным Лос-Аламосской национальной лаборатории, металл в основном производится в Малайе, Боливии, Индонезии, Заире, Таиланде и Нигерии.

Использование олова

Возможно, исторически наиболее важным применением олова было изготовление бронзы — сплава меди и олова или других металлов, которая изменила цивилизацию, открыв бронзовый век.Люди начали изготавливать или продавать бронзовые инструменты и оружие в разное время, в зависимости от географического положения, но принято считать, что бронзовый век начался около 3300 г. до н. Э. на Ближнем Востоке.

Только факты

По данным лаборатории линейных ускорителей Джефферсона, олово имеет следующие свойства:

  • Атомный номер (число протонов в ядре): 50
  • Символ атома (в Периодической таблице элементов): Sn
  • Атомный вес (средняя масса атома): 118.710
  • Плотность: 7,287 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 449,47 градуса по Фаренгейту (231,93 градуса Цельсия)
  • Точка кипения: 4,715 F (2602 C)
  • Количество изотопов один и тот же элемент с другим числом нейтронов): 51, 8 стабильный
  • Наиболее распространенные изотопы: Sn-112 (естественное содержание 0,97 процента), Sn-114 (0,66 процента), Sn-115 (0,34 процента), Sn-116 (14,54 процента), Sn-117 (7,68 процента), Sn-118 (24.22 процента), Sn-119 (8,59 процента), Sn-120 (32,58 процента), Sn-122 (4,63 процента) и Sn-124 (5,79 процента)

Электронная конфигурация и элементные свойства олова. (Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

Старый металл

Олово используется в бронзе примерно 5000 лет назад. Он также иногда появлялся в археологических записях сам по себе. Например, исследователи, проводившие раскопки в еврейском храме в Иерусалиме в 2011 году, обнаружили кусок жести размером с пуговицу, на котором было написано арамейское слово «чистый для Бога».«Эта печать, возможно, использовалась для обозначения церемониально чистых предметов для ритуалов, согласно сообщению в газете Haaretz.

Помимо бронзы, величайшим вкладом олова в человечество, вероятно, была скромная консервная банка. о том, как прокормить армию в движении. По данным Института производителей банок (да, даже у консервных банок есть торговая организация), Наполеон Бонапарт в 1795 году предложил награду любому, кто сможет придумать способ сохранить еду для военных использовать.В 1810 году французский шеф-повар Николя Апперт выиграл приз в размере 12 000 франков, изобретя консервирование — процесс запечатывания еды или напитков в банке или бутылке с использованием кипящей воды.

Только год спустя это открытие расчистило путь для изобретения консервной банки. В 1810 году британский купец Питер Дюран получил патент на использование луженой стали в консервных банках. Олово устойчиво к коррозии, что делает его идеальным покрытием для относительно дешевой стали.

Жестяная банка прибыла на берега Америки в 1818 году, и компания-производитель Thomas Kensett & Co запатентовала жестяную банку в Америке в 1825 году.Гражданская война вызвала рост популярности консервных банок, поскольку генералы снова искали способ накормить своих солдат.

Расцвет олова закончился в середине 20-го -го века, однако, когда Coors Brewery представила первую алюминиевую банку. Более дешевый, легкий и пригодный для вторичной переработки алюминий быстро обогнал олово и сталь.

Но олово все еще находит применение. Олово плюс элемент ниобий делает сверхпроводящий металл, используемый для изготовления проволоки. Для изготовления припоя используется сплав олова / свинца. Медь и другие металлы смешивают с оловом, чтобы получить олово, которое когда-то было обычным металлом для изготовления посуды.А оконное стекло приобретает свою шелковистую гладкую поверхность из формы из расплавленного олова. Этот метод называется процессом Пилкингтона.

Кто знал?

  • Эти золотые статуэтки Оскара не из чистого золота. На самом деле это металл Британии, покрытый золотом. Металл Британии примерно на 92 процента состоит из олова (остальное — это медь и сурьма).
  • Sn? Разве атомным символом олова не должно быть Tn? На самом деле Sn — это сокращение от латинского слова олово, stannum.
  • Когда олово сгибается при комнатной температуре, оно издает пронзительный скрипящий звук, известный как «крик олова», вызванный деформацией кристаллов олова.
  • При температуре ниже 13 градусов по Цельсию олово превращается в форму, называемую «альфа-олово». Пудрово-серая олово — аллотроп, другая форма элемента. По словам химика Андреа Селла из Лондонского университетского колледжа, альфа-олово — это полупроводник, но его сложно получить.

Текущие исследования

Недавно технические исследователи заинтересовались графеном, одноатомным слоем углерода, который и тверже, чем алмазы, и поддается растяжению, как резина. Вполне возможно, что следующий прорыв в области высоких технологий, такой как графен, будет происходить из скромного олова.

Исследователи из Стэнфордского университета и Национальной ускорительной лаборатории SLAC Министерства энергетики изобрели слой олова толщиной в один атом, который они называют станеном.

Станен особенный, потому что это первый материал, способный проводить электричество со 100-процентной эффективностью при комнатной температуре. Добавление нескольких атомов фтора поддерживает эту эффективность до и за пределами температур, при которых работают компьютерные микросхемы — примерно до 212 F (100 C).

«Согласно закону Мура количество транзисторов в плотной интегральной схеме удваивается примерно каждые два года», — сказал Live Science исследователь Юн Сюй, ныне физик из Университета Цинхуа в Пекине.«Как следствие, удельная мощность интегральных схем увеличивается экспоненциально, что приводит к серьезным проблемам, связанным с потреблением энергии и рассеиванием тепла».

Сюй и его команда, в том числе физик Шоучэн Чжан из Стэнфорда, знали, что им нужен тяжелый элемент со свойствами так называемого «топологического изолятора». Топологический изолятор — это материал, который проводит электричество по своей поверхности, но не проводит электричество внутри.

«Многие топологические изоляторы были изготовлены из тяжелых элементов, включая ртуть, висмут, сурьму, теллур и селен», — сказал Сюй.«Ни один из них не был идеальным проводником электричества при комнатной температуре».

Олово ранее для этих целей не исследовалось. Но Сюй и его коллеги обнаружили, что, когда атомы олова расположены в одном сотовом слое, свойства элементов меняются. Исследователи сообщили в ноябре 2014 года, что он становится идеальным проводником электричества при комнатной температуре без потери ни одного паразитного электрона.

Электроника, сделанная из станена, должна, таким образом, выделять меньше тепла и потреблять меньше энергии, чем их кремниевые аналоги.

Сюй и его сотрудники создали однослойное олово с помощью процесса, называемого молекулярно-лучевой эпитаксией, при котором газообразные версии элемента конденсируются в тонком слое внутри вакуума. По словам Сюй, это сложный процесс, требующий точной температуры и скорости роста слоя, чтобы обеспечить правильную атомную структуру. Команда надеется разработать более дешевые и простые способы производства станена в будущем.

«Следующим шагом будет выращивание высококачественных образцов станена в больших масштабах, а затем использование этого материала для фундаментальных исследований и практических применений», — сказал Сюй.

Следите за Live Science @livescience, Facebook и Google+.

Дополнительные ресурсы

Олово

Химический элемент олово классифицируется как другой металл (белое олово) или неметалл (серая олово). Это известно с давних времен. Его первооткрыватель и дата открытия неизвестны.

Зона данных

Классификация: Олово может вести себя как «другой металл» (белая банка)
или неметалл (серая жесть).
Цвет: серебристо-белый
Атомный вес: 118,69
Состояние: цельный
Точка плавления: 231.928 o C, 505.078 K
Температура кипения: 2620 o C, 2893 K
Электронов: 50
Протонов: 50
Нейтроны в наиболее распространенном изотопе: 70
Электронные оболочки: 2,8,18,18,4
Электронная конфигурация: [Kr] 4d 10 5s 2 5p 2
Плотность при 20 o C: 7.30 г / см 3

Показать больше, в том числе: тепла, энергии, окисления,
реакций, соединений, радиусов, проводимости

Атомный объем: 16,3 см 3 / моль
Состав: искаженный алмаз
Твердость: 1,5 МОС
Удельная теплоемкость 0,227 Дж г -1 К -1
Теплота плавления 7.029 кДж моль -1
Теплота распыления302 кДж моль -1
Теплота испарения 295,80 кДж моль -1
1 st энергия ионизации708,6 кДж моль -1
2 nd энергия ионизации 1411,8 кДж моль -1
3 rd энергия ионизации 2943 кДж моль -1
Сродство к электрону107 кДж моль -1
Минимальная степень окисления-4
Мин.общее окисление нет. 0
Максимальное число окисления 4
Макс. общее окисление нет. 4
Электроотрицательность (шкала Полинга) 1,96
Объем поляризуемости 7,7 Å 3
Реакция с воздухом легкая, с высокой температурой ⇒ SnO 2
Реакция с 15 M HNO 3 легкая, ⇒ SnO 2 , NO x
Реакция с 6 M HCl нет
Реакция с 6 М NaOH мягкий, ⇒ H 2 , [Sn (OH 6 )] 2-
Оксид (ов) SnO, SnO 2 (оксид олова)
Гидрид (ы) SnH 4 , Sn 2 H 6
Хлорид (ы) SnCl 2 и SnCl 4
Атомный радиус 140.17:00
Ионный радиус (1+ ион)
Ионный радиус (2+ ионов)
Ионный радиус (3+ иона)
Ионный радиус (1-ионный)
Ионный радиус (2-ионный)
Ионный радиус (3-ионный)
Теплопроводность 66,8 Вт · м -1 K -1
Электропроводность 8.7 x 10 6 См -1
Температура замерзания / плавления: 231.928 o C, 505.078 K

Открытие олова

Доктор Дуг Стюарт

Олово известно с древних времен. Мы не знаем, кто это открыл.

Бронзовый век начался примерно в 3000 году до нашей эры, и олово использовалось в бронзе, которая содержит примерно девяносто процентов меди и десять процентов олова.

Добавление олова в сплавы бронзы улучшает их свойства по сравнению с чистой медью: например, бронза тверже и легче отливается, чем медь.

Древние греки получали олово морским путем и называли его «Касситеридес», что означает «Острова олова».

Скорее всего, эти острова находились в Корнуолле, Великобритания, и / или на северо-западе Иберии, Испания, где есть большие залежи олова.

В менее древние времена британский ученый Роберт Бойль опубликовал описание своих экспериментов по окислению олова в 1673 году.

Химический символ олова, Sn, происходит от его латинского названия ‘stannum.’

Кристаллы касситерита — SnO 2 — оловянная руда (Фото Криса Ральфа)

Замедленная съемка аллотропов олова. Металлическое белое олово становится неметаллическим серым оловом. Это явление известно как «оловянный вредитель» и является проблемой при низких температурах. 1 секунда фильма равна одному часу в реальном времени.

Кусок металлического цинка в растворе хлорида олова. Цинк более активен, чем олово, поэтому вместо хлорида олова образуется хлорид цинка.На цинке начинают образовываться кристаллы чистого металлического олова.

Припой

можно использовать для защиты электронных компонентов. Припой обычно на 60% состоит из олова и на 40% из свинца. Здесь снимается припой с печатной платы. Изображение Хьюго.

Внешний вид и характеристики

Вредные воздействия:

Олово считается нетоксичным, но большинство солей олова токсичны. Неорганические соли едкие, но малотоксичные. Металлоорганические соединения олова очень токсичны.

Характеристики:

Олово — серебристо-белый, мягкий, ковкий металл, который можно полировать.

Олово имеет высококристаллическую структуру, и когда оловянный стержень изгибается, слышен «оловянный крик» из-за разрушения этих кристаллов.

В соединениях олово обычно находится в двухвалентном состоянии (Sn 2+ ) или четырехвалентном состоянии (Sn 4+ ).

Устойчив к кислороду и воде, но растворяется в кислотах и ​​щелочах. Открытые поверхности образуют оксидную пленку. При нагревании на воздухе олово образует оксид олова (IV) (оксид олова), который имеет слабую кислотность.

Олово имеет две аллотропные формы при нормальном давлении: серое олово и белое олово.Чистое белое олово постепенно превращается в серый порошок (серое олово), изменение, обычно называемое «оловянным вредителем» при температурах ниже 13,2 o ° C. Серое олово вообще не имеет металлических свойств. Банки товарного качества устойчивы к оловянным вредителям в результате ингибирующего действия незначительных примесей.

Использование олова

Олово используется в качестве покрытия на поверхности других металлов для предотвращения коррозии. «Жестяные» банки, например, изготавливаются из стали, покрытой оловом.

Олово можно свернуть в тонкие листы фольги (tinfoil).Современная фольга для покрытия или упаковки пищевых продуктов обычно изготавливается из алюминия.

Сплавы олова коммерчески важны, например, для изготовления мягкого припоя, олова, бронзы и фосфорной бронзы.

Хлорид олова (хлорид олова, SnCl 2 ) используется в качестве протравы при крашении текстильных изделий и для увеличения веса шелка.

Фторид олова (SnF 2 ) используется в некоторых зубных пастах.

Численность и изотопы

Обилие земной коры: 2.3 части на миллион по весу, 0,4 части на миллион по молям

Солнечная система изобилия: 9 частей на миллиард по весу, 0,1 частей на миллиард по молям

Стоимость, чистая: 24 $ за 100 г

Стоимость, оптом: $ 1,80 за 100 г

Источник: В природе олово очень редко встречается в свободном виде. Основная руда — касситерит (SnO 2 ). Металл получают из касситерита восстановлением руды углем.

Изотопы: Олово содержит 35 изотопов, период полураспада которых известен, массовые числа от 100 до 134.В олове десять стабильных изотопов, больше любого элемента.

Встречающееся в природе олово представляет собой смесь его десяти стабильных изотопов, и они находятся в указанных процентах: 112 Sn (1,0%), 114 Sn (0,7%), 115 Sn (0,3%), 116 Sn (14,5%), 117 Sn (7,7%), 118 Sn (24,2%), 119 Sn (8,6%), 120 Sn (32,6%), 122 Sn (4,6%) ) и 124 Sn (5,8%). Самый распространенный — 120 Sn, 32.6%.

Список литературы
Цитируйте эту страницу

Для онлайн-ссылки скопируйте и вставьте одно из следующего:

  Олово 
 

или

  Факты об элементе олова 
 

Чтобы процитировать эту страницу в академическом документе, используйте следующую ссылку, соответствующую требованиям MLA:

 "Жесть."Chemicool Periodic Table. Chemicool.com. 24 июля 2015 г. Web.
. 

Фактов об олове (атомный номер 50 или Sn)

Олово представляет собой серебристый или серый металл с атомным номером 50 и символом элемента Sn. Он известен тем, что его использовали для изготовления консервов, а также для изготовления бронзы и олова. Вот коллекция фактов об элементе олова.

Быстрые факты: олово

  • Название элемента: олово
  • Обозначение элемента: Sn
  • атомный номер: 50
  • Атомный вес: 118.71
  • Внешний вид: металлическое серебро (альфа, α) или серый металл (бета, β)
  • Группа: Группа 14 (Углеродная группа)
  • Период: Период 5
  • Электронная конфигурация: [Kr] 5s2 4d10 5p2
  • Открытие: известно человечеству примерно с 3500 г. до н.э.

Основные факты об олове

Олово известно с давних времен. Первым сплавом олова, получившим широкое распространение, была бронза, сплав олова и меди. Люди знали, как делать бронзу еще в 3000 году до нашей эры.

Происхождение слова: англосаксонское олово, латинское олово, оба названия элемента олова. Назван в честь этрусского бога Тинии; обозначается латинским символом олова.

Изотопы: известно много изотопов олова. Обычное олово состоит из десяти стабильных изотопов. Было обнаружено 29 нестабильных изотопов и существует 30 метастабильных изомеров. Олово имеет наибольшее количество стабильных изотопов среди всех элементов из-за его атомного номера, который является «магическим числом» в ядерной физике.

Свойства: олово имеет температуру плавления 231.9681 ° C, температура кипения 2270 ° C, удельный вес (серый) 5,75 или (белый) 7,31, валентность 2 или 4. Олово — это ковкий серебристо-белый металл, который требует полировки. Он имеет высококристаллическую структуру и умеренно пластичен. Когда брусок олова сгибается, кристаллы ломаются, создавая характерный «оловянный крик». Существуют две или три аллотропные формы олова. Серый или жесть имеет кубическую структуру. При нагревании при 13,2 ° C серое олово превращается в белое олово или b-олово, имеющее тетрагональную структуру.Этот переход от формы а к форме b называется оловянным вредителем. Форма g может существовать при температуре от 161 ° C до точки плавления. Когда олово охлаждается ниже 13,2 ° C, оно медленно переходит из белой формы в серую, хотя на переход влияют примеси, такие как цинк или алюминий, и его можно предотвратить, если присутствуют небольшие количества висмута или сурьмы. Олово устойчиво к воздействию морской, дистиллированной или мягкой водопроводной воды, но оно подвержено коррозии в сильных кислотах, щелочах и кислотных солях. Присутствие кислорода в растворе увеличивает скорость коррозии.

Использование: Олово используется для покрытия других металлов для предотвращения коррозии. Жестяная пластина поверх стали используется для изготовления коррозионно-стойких банок для пищевых продуктов. Некоторые из важных сплавов олова — это мягкий припой, легкоплавкий металл, металл типа, бронза, олово, баббитовый металл, металлический колокол, сплав для литья под давлением, белый металл и фосфорная бронза. Хлорид SnCl · H 2 O используется в качестве восстановителя и протравы при печати бязи. Соли олова можно распылять на стекло для получения электропроводящих покрытий.Расплавленное олово используется для плавления расплавленного стекла для производства оконного стекла. Кристаллические сплавы олова и ниобия обладают сверхпроводимостью при очень низких температурах.

Источники: Основным источником олова является касситерит (SnO 2 ). Олово получают восстановлением его руды углем в отражательной печи.

Токсичность: металлическое олово, его соли и оксиды обладают низкой токсичностью. Луженые стальные банки по-прежнему широко используются для консервирования пищевых продуктов. Уровни воздействия 100 мг / м 3 считаются немедленно опасными.Законно допустимое воздействие при контакте или вдыхании обычно составляет около 2 мг / м 3 за 8-часовой рабочий день. Напротив, оловоорганические соединения очень токсичны наравне с цианидом. Оловоорганические соединения используются для стабилизации ПВХ, в органической химии, для изготовления литий-ионных батарей и в качестве биоцидных агентов.

Физические данные олова

Источники

  • Эмсли, Джон (2001). «Банка». Строительные блоки природы: Путеводитель по элементам от А до Я.Оксфорд, Англия, Великобритания: Издательство Оксфордского университета. С. 445–450. ISBN 0-19-850340-7.
  • Greenwood, N. N .; Эрншоу, А. (1997). Химия элементов (2-е изд.). Оксфорд: Баттерворт-Хайнеманн. ISBN 0-7506-3365-4.
  • Вист, Роберт (1984). CRC, Справочник по химии и физике. Бока-Ратон, Флорида: Издательство компании Chemical Rubber Company. стр. E110. ISBN 0-8493-0464-4.

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
    браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie
потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт
не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к
остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.