Сталь это железо: Чем отличается сталь от железа

Чем отличается сталь от железа

Сталь отличается от железа присутствием углерода. По сути, сталь – это сплав углерода и железа. В стали содержится довольно высокий процент углерода. Железо – относится к простым веществам, поэтому содержание углерода в нем исключено. В природе чистое железо – большая редкость. Более того, даже человек почти не использует чистое железо для получения изделий.

Определение

Железо – химический элемент и простое вещество, практически не встречающееся и не использующееся в чистом виде.

Сталь – особые сплавы, основа которых железо, обогащенное разными химическими элементами. В стали содержится до 2,14 % углерода. Сплавы железа, обогащенные углеродом, утрачивая вязкость и пластичность, приобретают твердость и прочность.

к содержанию ↑

Сравнение

Железо в чистом виде не применяется. В этом виде его используют в лабораториях для постановки химических опытов и серьезных научных экспериментов. Дело в том, что смешение понятий «железо» и «сталь» произошло в народе. Люди отожествили сталь с железом, называя и то и другое «железом». Когда говорят о железе, на самом деле ведут речь о стали.

В зависимости от того, для какой цели предназначена сталь (сплав железа и каких-либо химических элементов), ей задают требуемые свойства, которые наилучшим образом отвечают складывающимся условиям эксплуатации.

Все находится в зависимости от тех химических элементов, которые добавят при выплавке стали и от того, какое их количество будет внесено в сплав. Сталь обогащают молибденом и кобальтом, вольфрамом и хромом, а также иными элементами. Изменяя состав стали, производят титановый сплав и нержавеющую сталь.

Кроме того, выпускают легированные стали, применяемые в авиации, где не обойтись в конструкциях без сверхпрочных элементов, к примеру, стоек шасси. В высоколегированную сталь добавляют легирующие элементы и углерод. Стали с легирующими элементами содержат минимум 45 % железа.

Железо в отличие от стали легко поддается коррозии.

к содержанию ↑

Выводы TheDifference.

ru

  1. Железо существенно отличается от стали. Оно обладает совершенно иными свойствами.
  2. Железо, в отличие от стальных сплавов, более подвержено корродированию.
  3. Чистое железо не используют в быту и промышленности. С чистым железом работают только в химических лабораториях.

Структура стали. Химические, механические и физические свойства.

«Железо не только основа всего мира, самый главный металл окружающей нас природы,

оно основа культуры и промышленности, оно орудие войны и мирного труда».

 А.Е.Ферсман

Все знаю, что сталь является важнейшим инструментальным и конструкционным материалом для всех отраслей промышленности.

Металлургическая промышленность Украины насчитывает более 50 металлургических заводов и является стратегически важной для страны. В Украине производится широкий ассортимент металлопроката, таких, как: арматура, круги, квадрат, катанка, проволока, полоса, уголок, балка, швеллер, листы, трубы и метизы.

Сталь

Рассматривая данный вопрос, начнем с химического состава.

Сталь – это соединение железо (Fe) + углерод (С) + другие элементы растворенные в железе.

Железо в чистом виде имеет очень низкую прочность, а углерод ее повышает.

Углерод улучшает и некоторые другие показатели:

  • твердость,
  • упругость,
  • устойчивость к износу,
  • выносливость.

Содержание  «Fe» в стали  должно быть — не менее 45%, «С»- не более 2,14% — теоретически,  однако на практике % концентрации углерода имеет следующий диапазон значений:

  • Низкоуглеродистые стали —  0,1-0,13 %
  • Углеродистые стали 0,14-0,5%
  • Высокоуглеродистые – от 0,6%

Чем выше процент содержания углерода в стали , тем выше ее прочность и меньше пластичность. УГЛЕРОД — является неметаллическим элементом. Его плотность равна 2,22 г/см3, а плавится при t -3500 °С.  В природе он присутствует 2х полиморфных модификаций – графит  (стабильная модификация) и алмаз (метастабильная модификация), а  в  сплаве с железом:

  • в свободном  — графит (в серых чугунах),
  • в связанном  — твердое состояние -цементит.

Углерод в соединении с железом находится в состоянии цементита, т.е в химической связи с железом (Fe3C). Структура цементита может быть очень разной, а зависит она от процесса образования, содержания углерода и методов термообработок.

Углерод в свободном состоянии присутствует в сером чугуне  (СЧ), в виде графита. Серый чугун имеет пористую металлическую структуру и является весьма хрупким; на нем легко появляются трещины (особенно в процессе сварки).

Химический состав углеродистых сталей обыкновенного качества (ГОСТ 380-71)

Система железо- углерод

Структура стали изучается по диаграмме состояния системы железо- углерод. Она характеризует структурные превращения стали и выражает зависимость структурного состояния от температурных режимов и химического состава.

Диаграмма состояния системы железо- углерод

Диаграмма состояния содержит критические точи, которые очень важны теоретически и практически для процессов термообработки стали и их анализа. С помощью диаграммы Fe-C — можно определить вид термообработки, температурный интервал изменения структуры и прогнозировать микроструктуру.

Структуры стали

Сплавы железа с углеродом при различных температурах и различном содержании «С» имеют различную структуру, а соответственно и физические и химические свойства. Одним из таких состояний и является описанный выше цементит. А теперь о них:

Аустенит  – твердая структура  углерода в  гамма-железе — содержит «С» до 1,7% (t >  723° С). При снижении температуры аустенит распадается на феррит и цементит и возникает пластинчатая структура — перлит.

Феррит  — твердый раствор «C» в  α-железа- при t> 723-768° С , концентрация «С» составляет — 0,02%, а при t 20°С около 0,006% «С». Он очень пластичен, не тверд и имеет низкие магнитные свойства.

Цементит — карбид железа Fe3C. Концентрация «С»  6,63% . Цементит является хрупким , а его твердость — НВ760-800.

Перлит —  механическая смесь феррита и цементита, образуемая при постепенном охлаждении в процессе распада аустенита. Исходя из размера частиц цементита перлит имеет различные механические свойства. Содержание «С» -0,8%.

Ледебурит (структура чугуна) — смесь образующаяся из кристаллизация жидкого сплава цементита и аустенита. Ледебурит очень твердый, но хрупкий. Концентрация «С»-4,3%

Свойства стали

Конечно, не только углерод  влияет на свойства стали. Состав дополнительных элементов и их количество придают стали определенные свойства. Примеси бывают полезными и вредными. Хорошие примеси влияют исключительно на сами кристаллы, а вредные негативно воздействуют на связь кристаллов между собой. К хорошим примесям относят : марганец (Mn), кремний (Si). К плохим: фосфор (Р), серу (S), азот, кислород и другие.

Физические и механические свойства стали

Основными физическими свойствами стали являются:

  • теплоемкость;
  • теплопроводность;
  • модуль упругости.
  • Понятие модуля упругости стали (Е) заключается в соотношении твердого вещества упруго деформироваться при воздействии силы. Данная характеристика на прямую зависит от напряжения, а точнее, является производной соотношения напряжения к упругой деформации.
  •  модуль сдвига (упругость при сдвиге) (G )– величина измеряемая в Паскалях (Па), определяющая упругие свойства тела или материала и их способность сопротивляться сдвигающим деформациям. Он применяется для расчета на сдвиг, срез, кручение.
  •  коэффициент линейного и коэффициент объемного расширения при изменении температуры – это величина показывающая относительное изменение линейных размеров или объема материала или тела при увеличении температуры при неизменном давлении.

Основными механическими свойствами стали являются:

  • прочность
  • твердость
  • пластичность
  • упругость
  • выносливость
  • вязкость

Показатели механических свойств углеродистых сталей обыкновенного качества ( ГОСТ 380-71)

Основными химическими свойствами стали являются:

  •  степень окисления
  •  устойчивость к коррозии
  •  жаростойкость
  •  жаропрочность

Качество стали определяется различными показателями всех ее свойств и структуры. Учитываются и свойства и изделий из этой стали.

По качеству стали разделяют на:

  • обыкновенного качества,
  • качественная сталь,
  • высококачественная сталь.

В данной статье мы рассматриваем только структуру стали и связанные с ней понятия. Качество стали, состав дополнительных примесей и их свойства будут  рассмотрены в следующей публикации.

Опубликовано: 24.12.2015

Что крепче сталь или железо

Основой для изготовления чугуна или стали служит железо. В природе это – металл с серебристым отливом, не имеющий достаточной твердости. Такой металл практически не используется в промышленности, а широкое применение получили различные сплавы железа.

Чугун и сталь – это сплавы железа с углеродом, но от содержания этих элементов и примесей будет зависеть качество металла.

Чугун

Чугун – первичный продукт металлургии. В его составе содержится углерода более 2% и значительное количество примесей, влияющих на свойства металла: марганец, фосфор, кремний, сера, легирующие добавки.

Чугун относят к хрупким металлам, его можно легко разбить на осколки при ударе, поэтому он менее практичен в обработке и применении. Вид углерода, содержащегося в чугуне, влияет на его свойства, поэтому различают несколько видов чугуна:

– серый, мягкий металл с низкой температурой плавления;

– белый, с повышенной твердостью, но хрупкий;

– ковкий, вторичный продукт белого чугуна;

Плотность чугуна составляет 7000 кг/м3.

Сталь

Процентное содержание углерода в сплаве не должно превышать отметку 2%, а железо составлять не менее 45%. Оставшиеся 53% могут содержать различные легирующие добавки и примеси, которые позволяют изменять его свойства.

Существует большое количество разновидностей и классификаций. В зависимости от количества связующих элементов различают:

Также различают по количеству углерода:

На качество металла влияет наличие неметаллических включений (оксиды, сульфиды, фосфиды) и существует классификация по качеству.

Общая характеристика это – металл, обладающий хорошей прочностью, износостойкостью, твердостью, пригоден для различных видов обработки. Плотность стали 7700 – 7900 кг/м3.

Не смотря, на большое количество разновидностей чугуна и стали, можно выделить основные параметры различия этих металлов:

– сталь обладает большей прочностью, пластичностью и твердостью;

– более пластична, поэтому хорошо поддается обработке (штамповке, ковке, прокатке, сварке), изделия из чугуна выполняют методом литья;

– чугун имеет меньшую стоимость;

– сталь имеет высокую теплопроводность, качество повышают методом закаливания, а чугун из-за пористости металла способен удерживать тепло;

– сплавы имеют различный удельный вес.

Металлургия поставляет на рынок сотни разновидностей того и другого сплава, которые имеют свои особенности и характеристики, но обязательными компонентами этих металлов являются железо и углерод. Поэтому сталь и чугун можно объединить в группу железоуглеродистых сплавов.

Вопрос по химии:

ПОЖАЛУЙСТА
Что прочнее и почему , железо или сталь?
Усиление благородных металлов в группе (Ag ,Ca,Zn), в чем проявляется его благородство?

Ответы и объяснения 1
Знаете ответ? Поделитесь им!
Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Химия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются.

Железо и сталь — важнейшие металлы. Сталь получают из железа. Из нее делают множество предметов — от нефтяных вышек до канцелярских скрепок. Наряду с 80 чистыми металлами людям известно немало сплавов — смесей металлов, качества которых отличаются от качеств чистых металлов. Башенные краны, мосты, другие сооружения делают из стали, содержащей до 0,2% углерода. Углерод делает сталь прочнее, причем она сохраняет ковкость. Сталь покрывают краской для защиты от коррозии.

Железо и сталь

Железо — это элемент. Его добывают из руды — соединения железа с кислородом. Большая часть добытого железа идет на производство стали, сплава железа с углеродом. Наиболее распространенные железные руды: магнетит(вверху) и гематит(внизу). Железо добывается из руды в доменных печах. Этот процесс называется плавкой. В печи через слой железной руды, известняка и кокса продувают очень горячий воздух. Кокс представляет собой почти чистый углерод, его получают нагреванием угля. Углерод кокса соединяется с кислородом, образуя моноксид углерода, который затем «вытягивает» кислород из руды, оставляя чистое железо, и образует диоксид углеро­да. Это пример реакций восстановления. Руда, кокс и известняк поступают в печь. Известняк реагирует с имеющимися в руде примесями, образуя шлак. Внутри печи раскаленный воздух реагирует с углеродом. Образуется моноксид углерода. При этом температура в печи повышается до 2000°С. Затем оксид углерода реагирует с кислородом руды, восстанавливая ее до железа. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог. В конце расплавленное железо выводится наружу. Доменная печь непрерывно функционирует 10 лет, пока её стенки не начнут разрушаться. Высота доменной печи 30 метров, толщина её стен 3 метра.

Железо, получаемое из руды, содержит углерод (около 4%) и другие примеси, в частности серу. Примеси делают желе­зо хрупким, поэтому большую его часть перерабатывают в сталь. При этом из железа удаляют­ся примеси. В стальных скрепках около 0,08% углерода. Инструменты делают из стали, содержащей хром, ванадий и до 1% углерода. Сталь получают при воздействии на расплавленное железо кислорода. Часто в железо добавляют небольшое количество стального лома. Кислород реагирует с углеродом, содержащимся в железе, при этом образуется моноксид углерода, используемый как топливо. После очистки в стали остается не более 0.04% углерода; его количество зависит от марки стали. Сталь получают также путем переплавки стального лома в дуговой электропечи. Для получения стали расплавленное железо и стальной лом заливают в печь, называемую конвертером. В конвертер под высоким давлением закачивается почти чистый кислород. При его реакции с углеродом получается моноксид углерода (см. так же статью «Химические реакции«). Другой способ получения стали — переплавка стального лома в дуговой электропечи. Мощный электрический ток (см. статью «Электричество«) расплавляет лом. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог.

Сплавы

Сплавом называется смесь двух или бо­лее металлов или металла и иного вещества. Так, латунь — это сплав меди и цинка. Латунь прочнее меди, ее легко обрабатывать, и она не подвержена коррозии. В чистых металлах атомы «упакованы» в тесные ряды (рис. слева). Ряды могут скользить относительно друг друга, что делает металл мягким. При резких сдвигах рядов металл ломается. В сплаве другие атомы укрепляют металл (см. рис. справа), т.к. сдвиг рядов уже невозможен. Поэтому сплавы прочнее чистых металлов.

Многие металлы сами по себе чересчур мягкие, чтобы их можно было использовать, зато их сплавы могут выдерживать большое давление и высокие температу­ры (см. статью «Тепло и температура«). Сталь — это сплав железа и углерода, неметалла. Добавляя небольшие количества других металлов, можно получить разновидности стали. Ножи и вилки делают из нержавеющей стали — сплава стали, хрома и никеля. Сплавы стали с марганцем чрезвычайно прочны и используются в промышленности для изготовления режущих инструментов. Алюминиево-магниевые сплавы лег­ки, прочны и не подвержены коррозии. Из них делают велосипеды и самолеты (см. статью «Полет«).

Важнейшие металлы и сплавы

Алюминий. Очень легкий серебристо-белый металл, не подверженный коррозии. Его получают из бокситов путем электролиза. Из алюминия делают электропровода, самолеты, корабли (см. статью «Плавучесть«), автомобили, банки для напитков, фольгу для приготовления пищи. Алюминиевые банки для напитков очень легкие и прочные.

Латунь. Ковкий сплав меди и цинка. Из латуни делают украшения, орнаменты, музыкальные инструменты, винты, кнопки для одежды.

Бронза. Известный с древнейших времен ковкий, не подверженный коррозии сплав меди и олова.

Кальций. Мягкий серебристо-белый металл. Входит в состав известняка и мела, а также костей и зубов животных. Кальций в человеческом организме содержится в костях и зубах. Он использует­ся в производстве цемента и высоко качественной стали.

Хром. Твердый серый металл. Ис­пользуется в производстве нержавеющей стали. Хромом покрывают металлические изделия в защитных целях и для придания им зеркального блеска.

Медь. Ковкий красноватый металл. Из меди делают электропровода, резервуары для горячей воды. Медь входит в со­став латуни, бронзы, мельхиора.

Мельхиор. Сплав меди и никеля. Из него делают почти все «серебряные» монеты.

Золото. Мягкий неактивный ярко-желтый металл. Используется в электронике и в ювелирном деле.

Железо. Ковкий серебристо-белый ферромагнетик. Добывается в основном из руды в доменных печах. Используется в инженерных конструкциях, а также в производстве стали и сплавов. В нашей крови тоже есть железо.

Свинец. Тяжелый ковкий ядовитый синевато-белый металл. Добывается из минерала гале­нита. Из свинца делают электрические батареи, крыши и экраны, защищающие от рентгеновских лучей.

Магний. Легкий серебри­сто-белый металл. Горит ярко-белым пламенем. Используется для сигнальных огней и фейерверков. Входит в состав легких сплавов. В праздничных ракетах есть магнии и другие металлы.

Ртуть. Тяжелый серебристо-белый ядовитый жидкий металл. Используется в термометрах, входит в состав зубной амальгамы и взрывчатых веществ.

Платина. Ковкий се­ребристо-белый неактивный металл. Ис­пользуется в качестве катализатора, а так­же в электронике и в производстве ювелирных изделий. Платина не вступает в реакции. Из нее делают украшения.

Плутоний. Радиоактивный металл. Образуется в ядерных реакторах при бомбардировке урана и используется в производстве ядерного оружия (см. статью «Ядерная энергия и радиоактивность«).

Калий. Легкий серебристый металл. Очень химически активен. Калиевые соединения входят в состав удобрений.

Серебро. Ковкий серовато-белый металл. Хорошо проводит тепло и электричество. Из него дела­ют украшения и столовые приборы. Входит в состав фотоэмульсии (см. статью «Фотография и фотоаппараты«).

Припой. Сплав олова и свинца. Плавится при сравнительно низкой температуре. Используется для спайки проводов в электронике.

Натрий. Мягкий серебристо-белый хими­чески активный металл. Входит в состав поваренной соли. Используется в производстве натриевых ламп и в химической промышленности.

Сталь. Сплав железа с углеродом. Широко применяется в промышленности. Нержа­веющая сталь — сплав стали с хромом — не подвержена коррозии и используется в авиакосмической индустрии (см. статью «Ракеты и космические аппараты«).

Олово. Мягкий ковкий серебристо-белый металл. Слоем олова сталь защищают от коррозии. Входит в состав таких сплавов, как бронза и припой.

Титан. Прочный белый ковкий металл, не подверженный коррозии. Из титановых сплавов делают космические аппараты, са­молеты, велосипеды.

Вольфрам. Твердый серовато-белый металл. Из него изготавливают нити ламп накаливания и детали электронных приборов. Из стали с Нить вольфрамом делают накаливания режущие инструменты.

Уран. Серебристо-белый радиоактивный металл, источник ядерной энергии. При­меняется при создании ядерного оружия.

Ванадий. Твердый ядовитый белый металл. Придает прочность стальным сплавам. Используется как катализатор при производстве серной кислоты.

Цинк. Синевато-белый металл. Добывает­ся из цинковой обманки. Используется для гальванизации железа, производства электробатареек. Входит в состав латуни.

Переработка металлов

Переработка — это повторное использование сырья, способ сохранить природные ресурсы. Металлы легко поддаются переработке, т.к. их можно переплавить и получить металл такого же качества, как и тот, что получается непосредственно из руды. Переплавлять сталь и алюминий несложно и выгодно. Медь, олово, свинец также подвергают­ся переплавке. Железные и стальные предметы можно извлечь из кучи отходов при помощи сильного магнита. Большую часть стали для переработки добывают из старых автомобилей и станков, но часть ее получают из фабричных металлических опилок и даже бытовых отходов. Стальной лом смешивают с расплавленным железом и получают новую сталь.

Алюминий — не ферромагнетик, но алюминиевые отходы можно отделить от железного лома при помощи электромагнита. Больше половины банок для напитков делают из алюминия, полученного пу­тем переработки. Чтобы узнать, сделана банка из стали или алюминия, возьми магнит. К стальной банке он прилипнет, а к алюминиевой — нет. Переработка металлолома требует значительно меньше энергии, чем получение металла из руды, и отходов при переработке меньше. Теоретически металл можно перерабатывать сколько угодно раз. Для переработки алюминиевых банок необходимо в 20 раз меньше энергии, чем для производства нового алюминия.

Отличия чугуна от стали: определение металла визуально Статьи про металлолом

18.01.2018 18:12

Сталь и чугун – это одни из наиболее популярных видов литейных материалов, применяющихся в промышленности. По своим свойствам они довольно схожи, понять, чем отличается сталь от чугуна, можно разными способами. Некоторые из методов можно использовать только в заводских условиях с помощью высокоточного оборудования, другие подходят для применения в быту.

Основное отличие чугуна от стали заключается в составе металлов. Сталь представляет собой сплав железа (45%) с углеродом (не более 2%) и легирующими примесями, в качестве которых могут выступать такие вещества, как никель, молибден либо другие. Этот металл отличается высокой прочностью, пластичностью, легкостью обработки. В состав чугуна также входит железо с углеродом, но последнего должно быть от 2% и больше. В качестве легирующих добавок обычно выступает кремний, фосфор, марганец или другие компоненты.

Различия физико-химических характеристик

Основная разница в качествах этих металлов заключается в следующем:

  • Твердость стали выше, чем у чугуна.
  • Масса стальных изделий меньше, при этом материал легче плавится.
  • Определенные виды обработки доступны только для стальных заготовок (ковка, сварка), в то время как чугунные изделия изготавливаются только литьевым методом.
  • Теплопроводность чугунных изделий ниже, чем у стальных аналогов.
  • Чугун не нуждается в обязательной закалке.

Можно ли отличить чугун от стали визуально?

Если речь идет о фрагментах или заготовках, обработка которых не нанесет вреда, можно посмотреть на визуальные отличия металлов. На сломе изделия из чугуна появляется темно-серый матовый оттенок, стальная поверхность более светлая, имеет глянцевую текстуру. Внешний вид зависит от содержания углеродистых компонентов, различить их можно по типу трещин: на высокоуглеродистых стальных поверхностях они похожи на дефект в виде раскола, на изделии из низкоуглеродистого сплава железа трещины выглядят как разрыв пластичного типа.

На вопрос о том, можно ли отличить готовые изделия по оттенку или текстуре, можно дать однозначный ответ: предметы из стали более светлые, практически всегда имеют глянцевый оттенок, изделия из чугуна – темные и матовые.

Как отличить чугун от стали?

Чтобы отличать эти металлы друг от друга, можно использовать следующие способы:

  • Сверление. Для этого понадобится взять насадку с маленьким диаметром и, выбрав на заготовке ровный участок, высверлить небольшое отверстие. Если при обработке материала образуется тонкая стружка, которая формируется в витую полоску длиной больше используемого сверла, имеет цвета побежалости по всей длине и достаточно хорошо гнется, заготовка сделана из стали. Чугунный сплав менее пластичен, он практически не образует вьюна, а стружка крошится от малейшего механического воздействия: ее легко растереть до состояния порошка, поскольку материал более хрупкий;
  • Шлифование. Для этого используется углошлифовальная машинка, для обработки выбирают участок, на который не воздействуют силы трения, контакт с другими металлическими поверхностями или деталями, в противном случае после шлифовки изделие может быть непригодным к дальнейшему использованию. В процессе обработки требуется следить за цветом искры и ее формой. Если сплав чугунный, искра будет короткой, звездочка будет иметь красноватый тон, а если деталь сделана из стали, искр вылетает больше, они имеют увеличенный размер и продолговатую форму. Сами искры имеют желтый или белый цвет. Исключением являются стальные сплавы с повышенным содержанием углерода, которые дают короткую багровую искру с укороченным треком и малой звездочкой.

Методы механического воздействия могут применяться в бытовых условиях, когда нужно определить, чугун или сталь перед вами, без применения специального оборудования. В лаборатории может использоваться современная техника, с помощью которой проводится спектральный или микроскопический анализ свойств металлов. Эти методы обеспечивают результат высокой точности, но используются преимущественно в промышленных целях, на производстве и в научно-технической отрасли ввиду сложности и дороговизны оборудования.

Сталь и железо в чем разница

Еще совсем недавно, говоря о входных дверях, покупатели и продавцы различали только два варианта: деревянные или железные. Входные двери из недорогих пород дерева давно уже стали элементом дачной жизни, в городских условиях и коттеджных поселках сейчас ставятся металлические, железные и стальные двери, которые часто путают, а точнее — считают их одними и теми же изделиями.

В салонах и строительных гипермаркетах продавцы готовы оказать помощь покупателям, но процесс выбора двери пройдет быстрее и эффективнее, если иметь первоначальные знания о предмете. Если вы будете расспрашивать продавца о «железной» двери, имея в виду стальную, можно приобрести совсем не то, что вам на самом деле нужно, и вернуться к необходимости выбора.

Железные двери

Эти недорогие изделия из мягкого легко деформируемого металла пользовались огромной популярностью, когда массовый потребитель начал отказываться от деревянных дверей. Железные двери до сих пор присутствуют на рынке, но относятся на текущий момент к экономклассу. Дверное полотно такой двери не имеет дополнительных ребер жесткости, толщина железного листа составляет 1–2 мм, замки и петли ставятся простейшие. Фактически, это имитация защиты жилья или офиса. Железную дверь легко вскрыть, в этом ее отличие от стальной. Такую дверь имеет смысл ставить как временный вариант во время ремонта или строительства, когда в помещении нет каких-либо материальных ценностей и никто не живет. Внешний вид у железных дверей обычно непритязателен, хотя некая видимость отделки может присутствовать. Железные двери всегда очень тяжеловесны, но при этом их легко взломать.

Металлические двери

Понятие довольно сомнительное и обтекаемое. Металлическими могут называть и железные, и стальные, и алюминиевые двери, и двери из так называемых «сложных сплавов», о которых вам толком никто ничего не расскажет. В цельной алюминиевой входной двери большого смысла нет, поскольку алюминий дороже стали, и используют его в основном из-за стойкости к коррозии. Входные алюминиевые двери широкого назначения обычно ставят там, где уместно их остекление — в торговых центрах, офисах, общественных зданиях. Алюминий частично используется в инновационных моделях входных дверей для дома, которые позиционируются как стальные — по материалу обшивки. «Сложные сплавы» означают тяжелую дверь экономкласса, которая дороже железной, но менее надежна, чем стальная. Всерьез рассматривать подобные предложения не стоит. Надежный сплав прост — это сплав железа с углеродом, который и называется сталью, в этом отличие стальной двери от металлической. Не углубляясь в «сопромат», можно сказать, что различные соотношения химических элементов и технологии получения сплавов диктуют свойства стали и ее стоимость. Кроме неизменных железа и углерода в формуле стали могут присутствовать кремний, марганец, сера, фосфор, хром и другие. Конкретные пропорции добавок определяют марку стали.

Стальные двери

Итак, если вы ищете надежную дверь из металла для частного дома или квартиры, к продавцу следует обратиться с вопросом о стальных дверях. Здесь уже будет иметь смысл обсуждать уровень взломостойкости, тепло- и звукоизоляцию, внешний вид двери.

Различают холоднокатаную и горячекатаную сталь. Технологических различий между ними на этапе выплавки нет, речь идет об окончательной обработке и раскатке металла в листы. Горячекатаная сталь получает форму листа в раскаленном виде, а холоднокатаная — когда сплав уже остыл. Листы небольшой толщины получают холодным способом, более толстые — горячим. В обшивке дверей для бытового применения в основном используют холоднокатаную сталь, которая позволяет создать легкую прочную конструкцию с высокой точностью подгонки всех деталей. Например, притворы можно изготовить правильно только из холоднокатаной стали. Технология изготовления дверей из холоднокатаной стали — сталегибочная. Из горячекатаных листов делают более грубые тяжелые двери для промышленных помещений, где не требуется высокой тепло- и звукоизоляции и нет высоких требований к внешнему виду дверной конструкции. Технология изготовления такой двери — трубно-сварная.

Итак, современная стальная дверь для дома должна удовлетворять следующим требованиям:

  • Холоднокатаная сталь, сталегибочная технология изготовления.
  • Толщина стального листа 1,5–2 мм.
  • Комбинация сувальдного и цилиндрового замков 3–4 класса взломостойкости.
  • Теплоизоляция из минеральной ваты или пенополистирола.
  • Регулируемые дверные петли, защищающие всю конструкцию от перекоса и неплотного прилегания полотна к коробке.
  • Притвор на дверной коробке, ребра жесткости в дверном полотне.
  • Эстетичная внешняя отделка, качественная фурнитура.

Запирающая система — это 50% надежности входной двери. Современные стальные двери, помимо качественных замков, оснащаются противосьемными штырями — ригелями. Их функция — удерживать полотно в дверной коробке в случае, если петли сбиты или срезаны злоумышленниками. Производители железных дверей ничего подобного не предлагают.

Отдельно стоит остановиться на отделке стальных дверей. Для нее существует богатый выбор материалов, оттенков и текстур. Грамотно подобранные декоративные панели придают двери индивидуальность, а в премиум-классе способны превратить надежную стальную дверь в настоящее произведение искусства. Популярны стальные двери с отделкой шпоном натурального дерева. Такую входную дверь можно органично вписать в любой интерьер, сочетая по стилю с межкомнатными.

Отличия стальных дверей ESTA

После того, как определены различия между стальными, железными и металлическими дверями, покупатель зачастую утрачивает энтузиазм: заведомо некачественная продукция отсеяна, а дальше — стальных дверей на рынке много, и все кажутся одинаковыми. Действительно, большинство производителей не занимается собственными разработками, позволяющими как-либо выделять их продукцию, и даже продавцы-консультанты вряд ли дадут вам развернутый комментарий в пользу того или иного бренда.

Компания ESTA имеет свой авторский взгляд на создание стальных дверей. Все 20 лет работы на российском рынке ее технологии и конструкции постоянно совершенствуются, чтобы потребитель мог получить уникальный продукт. Каталог стальных дверей ESTA включает пять основных серий и несколько специальных. Каждая дверь может быть укомплектована дополнительными средствами защиты и эксплуатации, а вариантов отделки — несколько сотен. Конструкции ESTA идеально регулируются и прочно устанавливаются в любые дверные проемы, включая мраморные и деревянные. Монтажная рама крепится в 14 точках опоры. Главный короб изготовлен из усиленной стали, а неподвижный порог придает ему дополнительную прочность. Возможно изготовление дверей по уникальной технологии INVISIBLE — со скрытыми итальянскими петлями и коробом специальной конструкции. Такая дверь практически сливается с плоскостью стены, имеет элегантный внешний вид и повышенную взломостойкость, обеспечивает «эффект холодильника» без второго контура уплотнителя. Дверь закрывается герметично, не пропуская посторонние звуки и запахи.

Продукция ESTA — единственная на мировом рынке, в которой успешно сочетаются российские и итальянские инженерные разработки. В магазине готовых решений ESTA можно приобрести наиболее популярные варианты, а также двери по акциям — со скидкой или уценкой.

У вас появились вопросы?

Мы всегда рады новым клиентам и готовы проконсультировать вас по любым вопросам касающихся нашей широкой линейки стальных дверей и другой дополнительной продукции.

Железо и сталь — важнейшие металлы. Сталь получают из железа. Из нее делают множество предметов — от нефтяных вышек до канцелярских скрепок. Наряду с 80 чистыми металлами людям известно немало сплавов — смесей металлов, качества которых отличаются от качеств чистых металлов. Башенные краны, мосты, другие сооружения делают из стали, содержащей до 0,2% углерода. Углерод делает сталь прочнее, причем она сохраняет ковкость. Сталь покрывают краской для защиты от коррозии.

Железо и сталь

Железо — это элемент. Его добывают из руды — соединения железа с кислородом. Большая часть добытого железа идет на производство стали, сплава железа с углеродом. Наиболее распространенные железные руды: магнетит(вверху) и гематит(внизу). Железо добывается из руды в доменных печах. Этот процесс называется плавкой. В печи через слой железной руды, известняка и кокса продувают очень горячий воздух. Кокс представляет собой почти чистый углерод, его получают нагреванием угля. Углерод кокса соединяется с кислородом, образуя моноксид углерода, который затем «вытягивает» кислород из руды, оставляя чистое железо, и образует диоксид углеро­да. Это пример реакций восстановления. Руда, кокс и известняк поступают в печь. Известняк реагирует с имеющимися в руде примесями, образуя шлак. Внутри печи раскаленный воздух реагирует с углеродом. Образуется моноксид углерода. При этом температура в печи повышается до 2000°С. Затем оксид углерода реагирует с кислородом руды, восстанавливая ее до железа. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог. В конце расплавленное железо выводится наружу. Доменная печь непрерывно функционирует 10 лет, пока её стенки не начнут разрушаться. Высота доменной печи 30 метров, толщина её стен 3 метра.

Железо, получаемое из руды, содержит углерод (около 4%) и другие примеси, в частности серу. Примеси делают желе­зо хрупким, поэтому большую его часть перерабатывают в сталь. При этом из железа удаляют­ся примеси. В стальных скрепках около 0,08% углерода. Инструменты делают из стали, содержащей хром, ванадий и до 1% углерода. Сталь получают при воздействии на расплавленное железо кислорода. Часто в железо добавляют небольшое количество стального лома. Кислород реагирует с углеродом, содержащимся в железе, при этом образуется моноксид углерода, используемый как топливо. После очистки в стали остается не более 0.04% углерода; его количество зависит от марки стали. Сталь получают также путем переплавки стального лома в дуговой электропечи. Для получения стали расплавленное железо и стальной лом заливают в печь, называемую конвертером. В конвертер под высоким давлением закачивается почти чистый кислород. При его реакции с углеродом получается моноксид углерода (см. так же статью «Химические реакции«). Другой способ получения стали — переплавка стального лома в дуговой электропечи. Мощный электрический ток (см. статью «Электричество«) расплавляет лом. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог.

Сплавы

Сплавом называется смесь двух или бо­лее металлов или металла и иного вещества. Так, латунь — это сплав меди и цинка. Латунь прочнее меди, ее легко обрабатывать, и она не подвержена коррозии. В чистых металлах атомы «упакованы» в тесные ряды (рис. слева). Ряды могут скользить относительно друг друга, что делает металл мягким. При резких сдвигах рядов металл ломается. В сплаве другие атомы укрепляют металл (см. рис. справа), т.к. сдвиг рядов уже невозможен. Поэтому сплавы прочнее чистых металлов.

Многие металлы сами по себе чересчур мягкие, чтобы их можно было использовать, зато их сплавы могут выдерживать большое давление и высокие температу­ры (см. статью «Тепло и температура«). Сталь — это сплав железа и углерода, неметалла. Добавляя небольшие количества других металлов, можно получить разновидности стали. Ножи и вилки делают из нержавеющей стали — сплава стали, хрома и никеля. Сплавы стали с марганцем чрезвычайно прочны и используются в промышленности для изготовления режущих инструментов. Алюминиево-магниевые сплавы лег­ки, прочны и не подвержены коррозии. Из них делают велосипеды и самолеты (см. статью «Полет«).

Важнейшие металлы и сплавы

Алюминий. Очень легкий серебристо-белый металл, не подверженный коррозии. Его получают из бокситов путем электролиза. Из алюминия делают электропровода, самолеты, корабли (см. статью «Плавучесть«), автомобили, банки для напитков, фольгу для приготовления пищи. Алюминиевые банки для напитков очень легкие и прочные.

Латунь. Ковкий сплав меди и цинка. Из латуни делают украшения, орнаменты, музыкальные инструменты, винты, кнопки для одежды.

Бронза. Известный с древнейших времен ковкий, не подверженный коррозии сплав меди и олова.

Кальций. Мягкий серебристо-белый металл. Входит в состав известняка и мела, а также костей и зубов животных. Кальций в человеческом организме содержится в костях и зубах. Он использует­ся в производстве цемента и высоко качественной стали.

Хром. Твердый серый металл. Ис­пользуется в производстве нержавеющей стали. Хромом покрывают металлические изделия в защитных целях и для придания им зеркального блеска.

Медь. Ковкий красноватый металл. Из меди делают электропровода, резервуары для горячей воды. Медь входит в со­став латуни, бронзы, мельхиора.

Мельхиор. Сплав меди и никеля. Из него делают почти все «серебряные» монеты.

Золото. Мягкий неактивный ярко-желтый металл. Используется в электронике и в ювелирном деле.

Железо. Ковкий серебристо-белый ферромагнетик. Добывается в основном из руды в доменных печах. Используется в инженерных конструкциях, а также в производстве стали и сплавов. В нашей крови тоже есть железо.

Свинец. Тяжелый ковкий ядовитый синевато-белый металл. Добывается из минерала гале­нита. Из свинца делают электрические батареи, крыши и экраны, защищающие от рентгеновских лучей.

Магний. Легкий серебри­сто-белый металл. Горит ярко-белым пламенем. Используется для сигнальных огней и фейерверков. Входит в состав легких сплавов. В праздничных ракетах есть магнии и другие металлы.

Ртуть. Тяжелый серебристо-белый ядовитый жидкий металл. Используется в термометрах, входит в состав зубной амальгамы и взрывчатых веществ.

Платина. Ковкий се­ребристо-белый неактивный металл. Ис­пользуется в качестве катализатора, а так­же в электронике и в производстве ювелирных изделий. Платина не вступает в реакции. Из нее делают украшения.

Плутоний. Радиоактивный металл. Образуется в ядерных реакторах при бомбардировке урана и используется в производстве ядерного оружия (см. статью «Ядерная энергия и радиоактивность«).

Калий. Легкий серебристый металл. Очень химически активен. Калиевые соединения входят в состав удобрений.

Серебро. Ковкий серовато-белый металл. Хорошо проводит тепло и электричество. Из него дела­ют украшения и столовые приборы. Входит в состав фотоэмульсии (см. статью «Фотография и фотоаппараты«).

Припой. Сплав олова и свинца. Плавится при сравнительно низкой температуре. Используется для спайки проводов в электронике.

Натрий. Мягкий серебристо-белый хими­чески активный металл. Входит в состав поваренной соли. Используется в производстве натриевых ламп и в химической промышленности.

Сталь. Сплав железа с углеродом. Широко применяется в промышленности. Нержа­веющая сталь — сплав стали с хромом — не подвержена коррозии и используется в авиакосмической индустрии (см. статью «Ракеты и космические аппараты«).

Олово. Мягкий ковкий серебристо-белый металл. Слоем олова сталь защищают от коррозии. Входит в состав таких сплавов, как бронза и припой.

Титан. Прочный белый ковкий металл, не подверженный коррозии. Из титановых сплавов делают космические аппараты, са­молеты, велосипеды.

Вольфрам. Твердый серовато-белый металл. Из него изготавливают нити ламп накаливания и детали электронных приборов. Из стали с Нить вольфрамом делают накаливания режущие инструменты.

Уран. Серебристо-белый радиоактивный металл, источник ядерной энергии. При­меняется при создании ядерного оружия.

Ванадий. Твердый ядовитый белый металл. Придает прочность стальным сплавам. Используется как катализатор при производстве серной кислоты.

Цинк. Синевато-белый металл. Добывает­ся из цинковой обманки. Используется для гальванизации железа, производства электробатареек. Входит в состав латуни.

Переработка металлов

Переработка — это повторное использование сырья, способ сохранить природные ресурсы. Металлы легко поддаются переработке, т.к. их можно переплавить и получить металл такого же качества, как и тот, что получается непосредственно из руды. Переплавлять сталь и алюминий несложно и выгодно. Медь, олово, свинец также подвергают­ся переплавке. Железные и стальные предметы можно извлечь из кучи отходов при помощи сильного магнита. Большую часть стали для переработки добывают из старых автомобилей и станков, но часть ее получают из фабричных металлических опилок и даже бытовых отходов. Стальной лом смешивают с расплавленным железом и получают новую сталь.

Алюминий — не ферромагнетик, но алюминиевые отходы можно отделить от железного лома при помощи электромагнита. Больше половины банок для напитков делают из алюминия, полученного пу­тем переработки. Чтобы узнать, сделана банка из стали или алюминия, возьми магнит. К стальной банке он прилипнет, а к алюминиевой — нет. Переработка металлолома требует значительно меньше энергии, чем получение металла из руды, и отходов при переработке меньше. Теоретически металл можно перерабатывать сколько угодно раз. Для переработки алюминиевых банок необходимо в 20 раз меньше энергии, чем для производства нового алюминия.

Многими людьми в обыденной речи часто употребляются понятия «сталь» и «железо», как синонимы. На практике они существенно отличаются друг от друга.

Что называется сталью

Сталью называют один из самых распространенных металлических сплавов. Он широко применяется при производстве различных машин, механизмов и приборов. Без нее немыслимо производство автомобилей и судов, железнодорожных вагонов и локомотивов. Стальная арматура используется в строительстве, из металлических конструкций сооружаются мосты, быстро возводимые сооружения. Этот сплав создается с заранее заданными свойствами, чтобы в наибольшей степени удовлетворять качественным характеристикам конкретного изделия. Обычно сталью называют сплав, в котором более 45 процентов железа. Для прочности и твердости в него добавляется углерод и легирующие компоненты.

Высокоуглеродистая сталь идет на изготовление различных силовых пружин и амортизаторов, рессор и других упругих деталей, рассчитанных на большие нагрузки. При изготовлении высокотехнологичного оборудования и приборов из такой стали изготавливают подвески, мембраны и множество других элементов разных форм и назначения. Отличаются детали из стали с повышенным содержанием углерода тем, что они выдерживают большие постоянные, ударные или циклические нагрузки, не имея остаточной деформации. Стали, у которых содержание углерода не велико, более пластичные и вязкие. Их удобно использовать для производства штампованных деталей, например, в автомобилестроении.

Для удобства применения стали классифицируют по различным параметрам.

Так по назначению они могут быть:

  • Конструкционными.
  • Нержавеющими.
  • Инструментальными.
  • Жаропрочными.
  • Морозостойкими.

Для оценки химического состава их относят к углеродистым и легированным. Первые бывают низко, средне и высокоуглеродистыми. По такому же принципу, исходя их содержания легирующих компонентов, делятся легированные стали. Стали могут различаться и по другим характеристикам (удельный вес, плотность, температура плавления, содержание хрома, молибдена, вольфрама и пр. ).

Есть такой металл – железо

Железом называется элемент, менделеевской периодической системы, обозначаемый символом Fe. Этот металл широко распространен в коре нашей планеты. Полагают, что из него состоит большая часть ядра Земли. Считается, что это один из самых распространенных элементов в Солнечной системе. Представляет собой серебристо-белого цвета металл, который поддается ковке. Горит в чистом кислороде. В чистом виде встречается редко. Комплекс уникальных свойств железа и его сплавов делают этот металл важнейшим для людей. Практически наиболее применяемые его сплавы с углеродом в виде стали, в том числе с добавлением марганца, хрома, никеля и чугуна.

Оно было известно еще в четвертом тысячелетии до н.э. в виде украшений и холодного оружия, которые изготавливались из железа, содержавшегося в метеоритах. Ценилось дороже золота. Позже его научились плавить из магнетитовых песков и железной руды в вырытых в земле печах. С изобретением примитивных доменных печей с использованием воздуходувных мехов древние римляне освоили производство чугуна и стали из него.

Железо содержится в большом количестве минералов, в частности, в таких:

  • Магнетит (72,4%)
  • Гематит (70 %)
  • Марказит ( 46,6 %)
  • Сидерит ( 35 %)
  • Миспикель ( 34,3 %)
  • Леллингит ( 27,2 %)

В числе стран с наибольшими месторождениями железа находятся Бразилия, Австралия, США, Канада, Швеция, Венесуэла, Либерия, Украина, Франция, Индия. Первое место в мире по его запасам занимает Россия. Перспективными являются железосодержащие месторождения, обнаруженные на дне океанов.

Промышленным способом железо получается из железной руды в виде агломерата, в основном в результате доменного процесса. В доменных печах при температуре 2000 °C его сначала восстанавливают углеродом. Полученный расплав железа, называемый чугуном, перенасыщен углеродом. Для получения стали он нуждается в дальнейшей переработке. Оно получается в твердом виде и переправляется в электропечах.

В чем отличия

Сталь и железо принципиально отличаются в следующем:

  1. Сталь является готовым продуктом металлоплавления и может использоваться в различных целях. Железо является элементом, который выступает основой и полуфабрикатом для производства стали.
  2. Стали за счет изменения рецептуры и технологии ее производства, могут задаваться определенные качества, необходимые для дальнейшего производства. В железе, как химическом элементе, его качества заложены природой.
  3. Сталь является сплавом, а в чистом железе содержится только оно.
  4. По прочностным характеристикам сталь значительно превосходит железо.
  5. Из стали изготавливают миллионы наименований изделий, из железа – десятки.

Самые прочные металлы на Земле


Первое качество, с которым ассоциируется у нас металл, это прочность. На самом деле прочность определяется несколькими свойствами, учитывая которые именно сталь и ее сплавы находятся в списке самых прочных металлов.

Что же такое прочность? Это способность материала выдерживать внешние нагрузки, при этом не разрушаясь. При оценке прочности металла учитывается много параметров и качеств: насколько хорошо металл сопротивляется разрыву, как он противостоит сжатию, каков порог перехода от упругого к пластическому состоянию, когда деформация материала становится необратимой, какова способность материала сопротивляться распространению трещин и т.п.


Прочные сплавы и природные металлы


Сплавы представляют собой комбинации разных металлов. Потребность получить самые разные качественные характеристики металлов, среди которых и прочность, привела к появлению различных сплавов. Одним из важных в этом смысле сплавов является сталь, которая представляет собой комбинацию железа и углерода. Итак, какие же металлы принято считать самыми прочными на Земле?


Поскольку для определения прочности металла необходимо учесть очень много факторов, трудно однозначным образом упорядочить металлы от самого «крепкого» до самого «слабого». В зависимости от того, какое свойство считается наиболее важным в каждом конкретном случае, и будет складываться расстановка сил прочности среди металлов.


Сталь и ее сплавы


Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.


Так, высокоуглеродистая сталь — это сплав железа с высоким содержанием углерода — получается прочной, относительно дешевой, долговечной, она хорошо поддается обработке. Из недостатков стоит отметить низкую прокаливаемость и низкую теплостойкость, что делает углеродистую сталь уязвимой в агрессивной среде.


Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.



Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.


Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.


Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.


Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.


Особо твердые сплавы


Сплавы на основе карбидов вольфрама, титана, тантала обладают твердостью, которой позавидует любой молот Тора.


Титан – это наиболее растиражированный в средствах массовой информации и кинематографе природный металл, который принято ассоциировать с суперпрочностью. Его удельная прочность почти вдвое выше, чем аналогичная характеристика легированных сталей. Он обладает самым высоким отношением прочности на разрыв к плотности из всех металлов. По этому показателю он обошел вольфрам, вот только по шкале твердости Мооса титан ему уступает. Тем не менее, титановые сплавы прочны и легки.


Сферы применения: титан и его сплавы часто используются в аэрокосмической промышленности. Из него делают элементы обшивки космических кораблей, топливные баки, детали реактивных двигателей. Активно используют его и в морском судостроении, строительстве трубопроводов для агрессивных сред и в качестве конструкционного материала.


Вольфрам с его самой высокой прочностью на растяжение среди всех встречающихся в природе металлов часто комбинируют со сталью и другими металлами для создания еще более прочных сплавов. К недостаткам вольфрама можно отнести его хрупкость и способность к разрушению при ударе.


Сферы применения: вольфрам применяют в металлургии для производства легированных сталей и различных сплавов, в электротехнической индустрии для изготовления элементов осветительных приборов, в машино- и авиастроении, в космической отрасли и химпроме. Сплав вольфрама и углерода (карбид вольфрама) используют для производства инструментов с режущими краями, таких как ножи и дисковые пилы, а также износостойких рабочих элементов горношахтного оборудования и прокатных валков.


Тантал обладает сразу тремя достоинствами – прочностью, плотностью и устойчивостью к коррозии. Он состоит в группе тугоплавких металлов, как и выше описанный вольфрам.


Сферы применения: тантал используется в производстве электроники и сверхмощных конденсаторов для персональных компьютеров, смартфонов, камер и для электронных устройств в автомобилях.


Инновационные сплавы



Существует ряд сплавов, которые появились совсем недавно, но уже успели завоевать признание благодаря своим «сверхкачествам» и активно используются в аэрокосмической сфере и медицине.


Алюминид титана – сплав титана и алюминия, который выдерживает высокие температуры и обладает антикоррозийными свойствами, но при этом он довольно хрупкий и недостаточно пластичный.  Тем не менее, он нашел свое применение в производстве специальных защитных покрытий.


Сплав титана с золотом – еще один уникальный материал, который был разработан несколько лет назад группой ученых из университетов США. Основная задача, которая стояла перед учеными, создать материал крепче титана, который можно было бы применять в медицине для производства протезов, совместимых с биотканью. Дело в том, что титановые протезы, несмотря на свою прочность, изнашиваются относительно быстро, их приходится менять каждые 10 лет. А вот сплав титана с золотом оказался вчетверо более прочным, чем те сплавы, что сейчас используются в производстве протезов.


Железоуглеродистые сплавы — сталь и чугун

Наиболее широкое применение в современном машиностроении имеют
железоуглеродистые сплавы — сталь
и чугун.

Сталь — это сплав железа с углеродом; содержание углерода в стали
не превышает 2%.

К сталям относятся:

  • техническое железо,

  • конструкционная и

  • инструментальная сталь.

Чугун — сплавы железа с углеродом, в которых содержание углерода превышает 2%. Среднее содержание углерода в чугуне 2,5—3,5%.

Кроме железа и углерода, в сталях и чугунах присутствуют примеси:

  • кремний и марганец в десятых долях процента (0,15— 0,60%)

  • сера и фосфор в сотых долях процента (0,05—0,03%) каждого элемента.

Сталь

Сталь с содержанием углерода
до 0,7% применяется для изготовления:

  • листов,

  • ленты,

  • проволоки,

  • рельсов,

  • таврового и уголкового железа,

  • различного фасонного профиля,

  • а также для многочисленных деталей в машиностроении: шестерни, оси, валы, шатуны, болты, молотки, кувалды и т.п.

Сталь с содержанием углерода
свыше 0,7% применяется для изготовления различного режущего инструмента:

  • резцы,

  • сверла,

  • метчики,

  • бородки,

  • зубила и др.

Свойства стали зависят от содержания углерода. Чем больше углерода, тем сталь прочнее и тверже.

Чугун

Машиностроительный чугунприменяют для производства отливок всевозможных деталей машин.

По составу и строению чугуны делятся на:

  • белый,

  • серый,

  • ковкий.

Ковкий чугун

Ковкий чугун получается в результате специальной обработки белого чугуна. В белом чугуне весь углерод находится в химически связанном состоянии с железом (Fe3C
— цементит), что придает этому чугуну большую твердость и хрупкость и плохую обрабатываемость.

Белый чугун

В машиностроении белый чугун
применяют для изготовления отливок, отжигаемых на так называемый ковкий чугун.

При отжиге цементит разлагается па железо и свободный углерод, и отливки приобретают невысокую твердость и хорошую обрабатываемость.

Серый чугун

Наиболее широкое применение в технике имеет серый чугун, в котором большая часть углерода находится в свободном состоянии, в виде графита. Этому способствует высокое содержание
кремния.

Такой чугун обладает хорошими литейными качествами и применяется для производства чугунных отливок. Детали из этого чугуна получаются путем отливки в земляные или металлические формы (станины, шестерни, цилиндры, блоки и т.п.).

Благодаря наличию свободного углерода (графита) серый чугун имеет небольшую твердость и хорошо обрабатывается резанием.

§

сталь | Состав, свойства, типы, марки и факты

Основной металл: железо

Изучение производства и структурных форм железа от феррита и аустенита до легированной стали.

Железная руда — один из самых распространенных элементов на Земле, и одно из основных ее применений — производство стали. В сочетании с углеродом железо полностью меняет характер и становится легированной сталью.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

Основным компонентом стали является железо, металл, который в чистом виде не намного тверже меди.За исключением крайних случаев, железо в твердом состоянии, как и все другие металлы, является поликристаллическим, то есть состоит из множества кристаллов, которые соединяются друг с другом на своих границах. Кристалл — это упорядоченное расположение атомов, которое лучше всего можно представить в виде соприкасающихся друг с другом сфер. Они упорядочены в плоскостях, называемых решетками, которые определенным образом пронизывают друг друга. Для железа структуру решетки лучше всего представить единичным кубом с восемью атомами железа в углах. Для уникальности стали важна аллотропия железа, то есть его существование в двух кристаллических формах.В объемно-центрированном кубе (ОЦК) в центре каждого куба находится дополнительный атом железа. В расположении гранецентрированного куба (ГЦК) есть один дополнительный атом железа в центре каждой из шести граней единичного куба. Важно отметить, что стороны гранецентрированного куба или расстояния между соседними решетками в ГЦК-схеме примерно на 25% больше, чем в ОЦК-схеме; это означает, что в структуре ГЦК больше места, чем в структуре БЦК, для хранения посторонних (т.е.е., легирование) атомов в твердом растворе.

Железо имеет аллотропию ОЦК ниже 912 ° C (1674 ° F) и от 1394 ° C (2541 ° F) до точки плавления 1538 ° C (2800 ° F). Называемое ферритом, железо в его ОЦК-образовании также называется альфа-железом в более низком температурном диапазоне и дельта-железом в более высокотемпературной зоне. Между 912 ° и 1394 ° C железо находится в ГЦК-порядке, которое называется аустенитом или гамма-железом. Аллотропное поведение железа сохраняется, за некоторыми исключениями, в стали, даже когда сплав содержит значительные количества других элементов.

Существует также термин бета-железо, который относится не к механическим свойствам, а к сильным магнитным характеристикам железа. При температуре ниже 770 ° C (1420 ° F) железо является ферромагнитным; температуру, выше которой он теряет это свойство, часто называют точкой Кюри.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

В чистом виде железо мягкое и обычно не используется в качестве конструкционного материала; основной метод его упрочнения и превращения в сталь — добавление небольшого количества углерода.В твердой стали углерод обычно присутствует в двух формах. Либо он находится в твердом растворе в аустените и феррите, либо находится в виде карбида. Форма карбида может быть карбидом железа (Fe 3 C, известный как цементит) или карбидом легирующего элемента, такого как титан. (С другой стороны, в сером чугуне углерод проявляется в виде чешуек или кластеров графита из-за присутствия кремния, подавляющего образование карбидов.)

Влияние углерода лучше всего иллюстрируется диаграммой равновесия железо-углерод.Линия A-B-C представляет точки ликвидуса (т.е. температуры, при которых расплавленное железо начинает затвердевать), а линия H-J-E-C представляет точки солидуса (при которых затвердевание завершается). Линия A-B-C указывает на то, что температуры затвердевания снижаются по мере увеличения содержания углерода в расплаве железа. (Это объясняет, почему серый чугун, содержащий более 2 процентов углерода, обрабатывается при гораздо более низких температурах, чем сталь.) Расплавленная сталь, например, с содержанием углерода 0.77 процентов (показано вертикальной пунктирной линией на рисунке) начинают затвердевать при температуре около 1475 ° C (2660 ° F) и полностью затвердевают при температуре около 1400 ° C (2550 ° F). С этого момента все кристаллы железа находятся в аустенитном, то есть в ГЦК-расположении, и содержат весь углерод в твердом растворе. При дальнейшем охлаждении происходит резкое изменение примерно при 727 ° C (1341 ° F), когда кристаллы аустенита превращаются в тонкую пластинчатую структуру, состоящую из чередующихся пластинок феррита и карбида железа.Эта микроструктура называется перлитом, а изменение называется эвтектоидным превращением. Перлит имеет твердость алмазной пирамиды (DPH) приблизительно 200 килограммов-сил на квадратный миллиметр (285 000 фунтов на квадратный дюйм) по сравнению с DPH 70 килограммов-сил на квадратный миллиметр для чистого железа. Охлаждение стали с более низким содержанием углерода (например, 0,25 процента) приводит к получению микроструктуры, содержащей около 50 процентов перлита и 50 процентов феррита; он мягче, чем перлит, с DPH около 130.Сталь с содержанием углерода более 0,77%, например 1,05%, содержит в своей микроструктуре перлит и цементит; он тверже перлита и может иметь DPH 250.

Диаграмма равновесия железо-углерод.

Британская энциклопедия, Inc.

Как производится сталь | Металл Супермаркеты

Сталь — один из наиболее широко используемых металлов в современном мире. Он дешевый, прочный и невероятно универсальный. Поскольку мировое производство составляет около 750 миллионов тонн в год, сталь является вторым по массовому производству товаром после цемента.

Сталь

полностью перерабатывается, и для ее производства требуется относительно мало энергии. Благодаря усилиям сталелитейной промышленности потребление энергии и выбросы углекислого газа составляют менее половины от того, что было в 1960-х годах. Это делает сталь экологически чистой и устойчивой.

Изделия из стали слишком многочисленны, чтобы их перечислять здесь, но включают: железные дороги, нефте- и газопроводы, небоскребы, лифты, метро, ​​мосты, автомобили, корабли, ножи и вилки, бритвы и хирургические инструменты.Сталь везде!

История железа

Железо — четвертый по содержанию элемент, составляющий более 5% земной коры.

Производство железа людьми началось примерно в 2000 году до нашей эры в юго-западной или южной части Центральной Азии. Это ознаменовало начало железного века, когда стали широко заменять бронзу на железо для инструментов и оружия. В то время кузнецы производили кованое железо, нагревая его и выковывая примеси над наковальней.Полученное железо было прочным, но податливым.

В средние века был разработан новый тип железа, использующий более высокие температуры. Это было известно как чугун, который был тверже кованого, но более хрупким.

Железо составляло материальную основу человеческой цивилизации на протяжении более трех тысяч лет до массового производства стали в 1870 году нашей эры.

Состав стали

Сталь

— это сплав железа и углерода. Он может содержать небольшое количество кремния, фосфора, серы и кислорода.

Содержание углерода в стали составляет от 0,08 до 1,5 процента. Это делает его тверже, чем кованое железо, но не таким хрупким, как чугун. Сталь обладает уникальным балансом твердости, гибкости и прочности на разрыв. Оно более прочное и лучше держит острую кромку, чем более мягкое кованое железо. В то же время он лучше противостоит ударам и растяжению, чем более хрупкий чугун.

Как производится сталь?

Для производства стали железную руду нагревают и плавят в печах, в которых удаляются примеси и добавляется углерод.

Сегодня большая часть стали производится с использованием одного из двух процессов:

  • Доменная печь
  • Электродуговая печь (ДСП)

Доменные печи используют в основном сырье (железную руду, известняк и кокс) с некоторым количеством стального лома для производства стали, тогда как в электродуговых печах используется в основном стальной лом.

Что такое доменная печь?

Доменная печь была изобретена англичанином Генри Бессемером в середине 1850-х годов. Бессемер разработал способ производства стали, продувая воздух через расплавленное железо для окисления материала и отделения примесей.

Современная доменная печь представляет собой большую стальную оболочку цилиндрической формы, облицованную жаропрочным кирпичом. Железная руда, кокс и известняк загружаются в печь сверху и постепенно опускаются к основанию, становясь все более горячими по мере опускания. В верхней половине печи газ от горящего кокса выделяет кислород из железной руды. В нижней половине печи известняк начинает реагировать с примесями в руде и коксе, образуя шлак.

На дне печи температура достигает более 3000 по Фаренгейту.Расплавленный шлак плавает поверх жидкой стали, позволяя слить его через шлаковый вырез в печи.

Стальной расплав выходит из пода печи через летку.

Что такое дуговые печи (ДСП)?

ДСП

в основном используются для производства сталей особого качества, легированных другими металлами. ЭДП также можно использовать для производства обычных нелегированных сталей.

В отличие от печей, в ДСП не используется чугун. Они используют стальной лом из переработанных продуктов.

Стальной лом сбрасывается в ДСП с мостового крана. Когда печь наполняется, крышка закрывается, закрывая верх печи. В крышке находятся электроды, которые опускаются в печь. Электроды заряжаются мощным электрическим током, который выделяет тепло, плавя лом.

По мере плавления лома в сталь добавляются другие металлы, известные как ферросплавы, для придания ей желаемого химического состава. Кислород вдувается в печь для очистки стали.Известь и плавиковый шпат добавляются для плавления с примесями и образования шлака.

Расплавленный шлак плавает поверх жидкой стали и может быть слит, наклонив печь.

В ЭДП можно изготавливать ряд сталей особого качества путем объединения других металлов в стальные сплавы. Наиболее широко используемая из них — нержавеющая сталь, в которую добавлены хром и никель для придания ей коррозионно-стойких свойств. Другие специальные стали, производимые в ДСП, включают стали, используемые в машиностроении, авиакосмической промышленности и для изготовления брони.

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании. Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины.Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

О СТАЛИ | мировая сталь

Сталь производится по двум основным направлениям: по линии доменная печь-кислородная печь (BF-BOF) и по линии электродуговой печи (EAF). Также существуют варианты и комбинации производственных маршрутов.

Основное различие между маршрутами — это тип сырья, которое они потребляют. Для маршрута BF-BOF это преимущественно железная руда, уголь и переработанная сталь, в то время как на маршруте EAF сталь производится с использованием в основном переработанной стали и электроэнергии.В зависимости от конфигурации завода и наличия переработанной стали, другие источники металлического железа, такие как железо прямого восстановления (DRI) или чугун, также могут использоваться на маршруте EAF.

Всего 70,7% стали производится с использованием доменной печи-конвертера. Во-первых, железная руда восстанавливается до железа, также называемого чугунным чугуном. Затем чугун превращается в сталь в конвертерном конвертере. После литья и прокатки сталь поставляется в рулонах, листах, профилях или прутках.

Сталь, производимая в ЭДП, использует электричество для плавления переработанной стали.Добавки, такие как сплавы, используются для корректировки желаемого химического состава. Электроэнергия может быть дополнена кислородом, вводимым в ДСП. Последующие этапы процесса, такие как литье, повторный нагрев и прокатка, аналогичны тем, которые встречаются на маршруте BF-BOF. Около 28,9% стали производится в ЭДП.

Другая технология выплавки стали, мартеновская печь (мартеновская печь), составляет около 0,4% мирового производства стали. Процесс OHF очень энергоемкий и находится в упадке из-за своих экологических и экономических недостатков.

Более подробную информацию, относящуюся к вышеперечисленным данным, можно найти в нашем Статистическом Ежегоднике сталелитейной промышленности за 2019 год.

Большинство стальных изделий используются десятилетиями, прежде чем их можно будет переработать. Следовательно, переработанной стали недостаточно для удовлетворения растущего спроса с использованием одного метода производства стали в ЭДП. Спрос удовлетворяется за счет комбинированного использования методов производства BF-BOF и EAF.

Все эти производственные методы могут использовать переработанный стальной лом в качестве сырья. Большая часть новой стали содержит переработанную сталь.

Ознакомьтесь с нашей публикацией World Steel in Figures для получения дополнительной информации.

Какие четыре типа стали?

Сталь — такой мощный элемент, она бывает нескольких различных сортов и обладает уникальным химическим составом. Теперь, когда свойства стали и различные стальные сплавы настолько обширны, было бы шокировать осознание того, что все виды стали, даже обрабатываемая на станках с ЧПУ, состоят всего из двух частей: железа и углерода.
Однако настоящая разница начинается, когда появляются дополнительные углеродные и легирующие элементы.Видите ли, долговечность и прочность стали определяются теми дополнительными аспектами (такими как марганец и фосфор), которые вводятся при ее формулировании, и именно это определяет ее категорию для конкретных применений. Итак, если вам интересно, какой тип стали покупать для ваших конкретных нужд, вы должны понимать химическую структуру физических свойств стали, которые подразделяются на четыре основных типа.

Четыре основных типа стали

1. Углеродистая сталь

Углеродистая сталь выглядит тусклой, матовой и, как известно, подвержена коррозии.В целом, существует три подтипа этой стали: низкоуглеродистая, средне- и высокоуглеродистая сталь, при этом низкоуглеродистая сталь содержит около 30% углерода, средняя 0,60% и высокая 1,5%. Само название на самом деле происходит от того факта, что они содержат очень небольшое количество других легирующих элементов. Они исключительно прочные, поэтому их часто используют для изготовления таких вещей, как ножи, высоковольтные провода, автомобильные детали и другие подобные предметы.

Факт: Углеродистые стали составляют около 90% всего производства стали.

Сталь

C45 / AISI 1045 — это среднеуглеродистая сталь, подходящая для таких деталей, как шестерни, болты, оси и валы общего назначения, шпонки и шпильки.Мгновенно укажите цену на деталь

из углеродистой стали.

2. Легированная сталь

Далее идет легированная сталь, которая представляет собой смесь нескольких различных металлов, таких как никель, медь и алюминий. Они, как правило, более дешевы, более устойчивы к коррозии и используются для некоторых автомобильных запчастей, трубопроводов, корпусов судов и механических проектов. Для этого сила зависит от концентрации элементов, которые в нем содержатся.

Легированная сталь AISI 4317 / 18NiCrMo5: высокая прочность и ударная вязкость сердечника, сверхмощные подшипники, кулачковые толкатели, собачки сцепления, компрессорные кольца, валы вентиляторов, сверхмощные шестерни, валы насосов.Мгновенно укажите цену на деталь из легированной стали

3. Инструментальная сталь

Инструментальная сталь

известна своей твердостью, устойчивостью к нагреванию и царапинам. Название происходит от того факта, что они очень часто используются для изготовления металлических инструментов, таких как молотки. Для них они состоят из таких вещей, как кобальт, молибден и вольфрам, и это основная причина того, почему инструментальная сталь обладает такими высокими характеристиками прочности и термостойкости.

4. Нержавеющая сталь

И последнее, но не менее важное: нержавеющая сталь, вероятно, является самым известным типом на рынке.Этот тип блестящий и обычно содержит от 10 до 20% хрома, который является их основным легирующим элементом. Такая комбинация делает сталь устойчивой к коррозии и очень легко формуется в различных формах. Из-за простоты использования, гибкости и качества нержавеющая сталь может использоваться в хирургическом оборудовании, бытовом оборудовании, изделиях из серебра и даже использоваться в качестве внешней облицовки коммерческих / промышленных зданий.

Факт: существует более 100 марок нержавеющей стали, что делает ее невероятно универсальным материалом, который можно изменять.

Нержавеющая сталь 316L: подходит для теплообменников, трубопроводов, материалов для наружного строительства в прибрежных районах, браслетов, корпусов и т. Д. Для современных часов, оборудования для использования в морской, химической, красочной, пищевой промышленности. Мгновенно укажите цену на деталь из нержавеющей стали

Марки стали

, которые следует принять к сведению, из

Класс

стали очень часто используется инженерами, учеными, архитекторами и даже государственными учреждениями, чтобы укрепить свою уверенность в стабильности и качестве материалов.

  • Система классификации ASTM: она присваивает каждому металлу буквенный префикс в зависимости от его категории. Например, буква «А» обозначает сталь и железо. Затем ему присваивается порядковый номер, который отражает особые свойства этого металла.
  • Система оценок SAE: В этой системе оценок для классификации используется четырехзначный номер. Первые два указывают тип стали вместе с концентрацией легирующего элемента, а последние два отражают концентрацию углерода в этом конкретном металле.

Заключение

В 1967 году в мире было произведено всего 500 миллионов тонн стали. Однако в 2016 году это число выросло до более 1600 миллионов. Кроме того, по данным Всемирной ассоциации производителей стали, 55% веса обычного автомобиля приходится на сталь. В этой реальности трудно представить мир без стали. Имея более 3500 различных марок стали, возможности его использования кажутся безграничными. От производства и изготовления до обработки стали с ЧПУ — каждый тип имеет свое идеальное место и характеристики, чтобы удовлетворить практически любые потребности.

В конце концов, разные свойства стали проистекают из использования разных стальных сплавов и делятся на четыре типа, которые мы видим сегодня. Итак, если вы думаете о покупке стали, найдите время, чтобы определить идеальные свойства стали, которые вам нужны, и правильный сорт для выполнения той работы, которую вы стремитесь выполнить. Вы будете благодарить себя, сделав это сейчас, вместо того, чтобы позже обнаружить, что выбрали не тот.


Источники и дополнительная литература

https: // www.meadmetals.com/blog/steel-grades#:~:text=The%20Four%20Types%20of%20Steel,elements%20b except%20carbon%20and%20iron.
https://www.metalsupermarkets.com/types-of-steel/
https://www.oughttco.com/steel-grades-2340174
https://en.wikipedia.org/wiki/Tool_steel#~: : text = 10% 20Bibliography-, Water% 2Dharpting% 20group, имеющий% 20to% 20be% 20water% 20. & text = The% 20toughness% 20of% 20W% 2Dgroup, зерно% 20размер% 20 во время обработки% 20heat% 20.
https://www.worldsteel.org/media-centre/press-releases/2017/world-steel-in-figures-2017.HTML
https://www.etf.com/sections/features-and-news/1289-cars-and-metal-metal-and-cars?nopaging=1&__cf_chl_jschl_tk__=3a8ca3d4790939c87c877dcfb2e55cd6233860cb-1600380671-0-AasJiDTBvhrkbY9YZHsDpzuaM-dpqbZOVjFpgmW-THnSW1enoB8aJgcv3id1B0g8hsOA_W0Cc5nUrnMnODkbsm64bthN- EhygbGpib0cUoZBi-O_iSX3sjZYrmoQEqq0KDXlKO2iscWjgPnCnFLvhiRpIs2RRmmSExzW3VEz51em5wiYtKsVO2ZWvx7Px8hkvbhBU-IJtpkrPSQy_qK_hZcjiu14ZPKEukYBqWLBpy_b6jJyx3ToAjECPcBiKrUDUte13WCLcBqdj4u_-9HBsQSNNC_uJo7qsMCmazJ0ATdkhJDAM2zMBsqhxeqxr8cFo-TsOAFrjrya4VJ4_rGhqgiGlrdSbSshIyyZ-WxEqIq45nob3TtucY8kQnhmLjSEfLGXwnVHfMytHPSXgsdk-XCDhHqPuvJMfa6GTvDlDUAvvaj1xFZBYWF42R_0aBCKlw
https: // эн.wikipedia.org/wiki/Steel#:~:text=Carbon%20steels,-Modern%20steels%20are&text=Carbon%20steel%2C%20composed%20simply%20of,the%20hardenability%20of%20thick%20sections.
http://www.osstrobe.com/resources/articles/stronic-steel-grades.php#:~:text=There%20are%20over%20100%20grades,chromium%2C%208%25%20nickel

Как сталь сделана — краткое изложение доменной печи

Есть два типа
металлов, черных и цветных. Железо происходит из железа или содержит его, в то время как
Цветные металлы не содержат железа.

Некоторые образцы черных металлов
быть мягкой сталью, чугуном, высокопрочной сталью и инструментальной сталью.

Примеры
из цветных металлов — медь, алюминий, магний, титан и т. д.

К
делают сталь, железную руду сначала добывают из земли. Затем он плавится во взрыве.
печи, в которых удаляются примеси и добавляется углерод. На самом деле очень
простое определение стали — это «железо, легированное углеродом, обычно менее чем
1%.»

Следующий текст взят из Руководства по конструкции для металлургов.
Руководство V-Том I.

Доменные печи требуют множества вспомогательных средств для
поддерживать их операции. Однако, говоря простым языком, сама печь представляет собой
огромная стальная оболочка почти цилиндрической формы, облицованная жаропрочным кирпичом.
После запуска или «продувки» печь работает непрерывно до тех пор, пока
огнеупорная футеровка нуждается в обновлении или до тех пор, пока потребность в чугуне не упадет до предела
где печь закрыта.Продолжительность работы печи с момента запуска
до завершения называется «кампанией» и может длиться несколько лет.

Железная руда и другие железосодержащие материалы, кокс и известняк засыпаны
в топку сверху и спускаются вниз, становясь все горячее по мере того, как они
раковина в теле печи, которая называется штабелем. В верхней половине
в печи газ от сжигания кокса удаляет большое количество кислорода из чугуна
руда. Примерно на полпути известняк начинает реагировать с примесями в руде.
и кокс для образования шлака.

Зола кокса поглощается шлаком.
Некоторое количество кремнезема в руде восстанавливается до кремния и растворяется в железе.
немного углерода в коксе. На дне печи, где повышается температура
значительно выше 3000 по Фаренгейту, расплавленный шлак плавает в ванне с расплавленным чугуном, который
четыре или пять футов глубиной. Поскольку шлак плавает поверх чугуна, возможно
слить через шлаковую выемку в печи. Расплавленный чугун выделяется
из пода печи через летку.Выпуск железа и шлака
является основным фактором, позволяющим загружать в печь дополнительные материалы.
вершина.

Это краткое описание сложных операций доменной печи
представлены здесь, чтобы служить точкой отсчета для фактического потока операций.
Очень часто в одном цехе могут быть устроены несколько доменных печей, так что
наиболее эффективно можно использовать топливо, внутренние железнодорожные пути и т. д.

Отличный сайт о производстве стали…
http: // www.dofasco.ca/HOW_STEEL_IS_MADE/html/index.html

Минеральные ресурсы месяца: железо и сталь

Минеральные ресурсы месяца: железо и сталь

Геологической службой США
28 января 2015 г., среда

Майкл Д. Фентон, специалист по минеральным ресурсам Геологической службы США, собрал следующую информацию о чугуне и стали — металлах, имеющих решающее значение для промышленной базы США.

Железо — один из самых распространенных элементов на Земле, но он не встречается в природе в полезной металлической форме.Хотя древние люди, возможно, извлекали некоторое количество железа из метеоритов, до тех пор, пока не была изобретена плавка, металлическое железо можно было получить из оксидов железа. После начала железного века, примерно в 1200 году до нашей эры, знания о производстве чугуна и стали распространились с древнего Ближнего Востока через Грецию в Римскую империю, затем в Европу и, в начале 17 века, в Северную Америку. Первая успешная печь в Северной Америке начала работать в 1646 году на территории нынешнего Согуса, штат Массачусетс. Введение конвертера Бессемера в середине 19 века сделало возможным наступление современной стали.

Чугун — это высокоуглеродистый сплав, полученный путем плавки железной руды в доменной печи с использованием углеродистого материала, обычно кокса, в качестве восстановителя. Известняк добавляется в шихту железорудного кокса в качестве флюса для удаления примесей. Сталь производится из чугуна путем удаления части углерода в кислородном конвертере и добавления нескольких легирующих элементов, таких как марганец, хром, медь, никель, титан, молибден, вольфрам и ванадий. Сталь также производится путем переработки лома черных металлов в дуговой электропечи.

Существует много марок стали, но тремя основными типами стали являются углеродистая, легированная и нержавеющая. Около 93 процентов стали, производимой в Соединенных Штатах, — это углеродистая сталь, которая содержит максимум 2 процента углерода. Применения находят в бытовой технике, строительстве, судостроении, таре и упаковке, а также в автомобилестроении, машиностроении и производстве оборудования. Легированная сталь, составляющая около 5 процентов годового производства, содержит до 4 процентов легирующих элементов. Специальные области применения легированной стали включают использование в обрабатываемых деталях и производстве инструментов.Нержавеющая сталь, на долю которой приходится около 2 процентов годового производства стали, образуется путем добавления в сталь хрома и обычно никеля, чтобы сделать ее очень устойчивой к коррозии.

С 2008 года объемы производства стали значительно превышают видимое потребление стали, в первую очередь в результате быстрого экономического роста Китая и быстрого увеличения производственных мощностей. Это привело к притоку стальной продукции в Соединенные Штаты и другие страны-производители стали, которые уже имеют избыточные мощности.Спрос китайских производителей стали также вызвал беспрецедентный рост цен на железную руду и металлургический уголь. В краткосрочной перспективе ожидается, что объемы производства стали в мире и особенно в Китае будут по-прежнему превышать потребление стали, при этом цены на сталь и производственные затраты останутся стабильными.

Посетите http://minerals.usgs.gov/minerals для получения дополнительной информации о чугуне, стали и других минеральных ресурсах.


ПРОИЗВОДСТВО И ПОТРЕБЛЕНИЕ ЖЕЛЕЗА

  • В 2012 году в США было произведено около 89 миллионов метрических тонн стали, больше, чем любого другого металла.Стоимость экспортируемого лома черных металлов в 2012 году составила 9,43 миллиарда долларов, что является самым высоким показателем среди всех видов металлолома.

  • Мировое производство необработанной стали в 2012 году составило 1,46 миллиарда метрических тонн. Китай, на долю которого приходится более 48 процентов мировых сталеплавильных мощностей, возглавляет мировое производство с показателем 717 миллионов метрических тонн.

  • Видимое мировое потребление стали в 2012 году составило около 1,41 миллиарда метрических тонн, из которых около 646 миллионов метрических тонн потреблено Китаем и 97,8 миллиона метрических тонн — США.С.


ЛЮБОПЫТНЫЕ ФАКТЫ

  • Слово «железо» частично происходит от древнескандинавского слова «iarn».

  • Элементный символ железа, Fe, происходит от латинского слова «железо», «ferrum».

  • Железо составляет почти 6 процентов земной коры и почти все ядро ​​Земли.

  • Железо из обогащенных злаков для завтрака может быть извлечено путем тонкого измельчения хлопьев, смешивания их с водой и перемешивания с помощью магнита.

Железо и сталь | Американский опыт | Официальный сайт

Streamliners: потерянные поезда Америки |

Статья

Железо и сталь

Нержавеющая сталь произвела революцию не только в поездах, таких как Burlington Zephyr. Осмотрите комнату, в которой находитесь. Скорее всего, вы сможете увидеть или хотя бы подумать о многих предметах, сделанных из стали. Нелегко представить современную жизнь без этого универсального металла, не правда ли? Хотя производство металлов существует уже очень давно (железный век начался примерно в восьмом веке до нашей эры).C.), только в конце 19 века производители научились дешево массово производить металлы и выковывать такой же полезный материал, как нержавеющая сталь.

Строительство Зефира в Калифорнии, Музей Хэгли

Уже знакомые с плавкой золота, серебра и меди, кузнецы по металлу, возможно, еще в 4000 г. до н.э., пытались использовать уже известные им методы плавки железной руды. Безуспешно пытаясь найти новую технику. Только когда было обнаружено, что железная руда имеет сродство к кислороду (и, следовательно, содержит), стало возможным развитие железа, а затем стали.

Ранние процессы получения железа из руды требовали нагревания руды веществом с высоким содержанием углерода, например древесным углем. Когда температура в печи достигла 1650 градусов по Фаренгейту, руда начала выделять кислород, а древесный уголь — углерод. Затем эти два элемента объединились, образуя окись углерода, оставив после себя губчатую массу железа. Если позволить температуре достичь 2190 градусов по Фаренгейту, эта масса поглотит небольшое количество углерода, образуя кованое железо.При более высоких температурах чугун поглотит больше углерода, расплавится, и в результате получится расплавленный металл, называемый литым или чугунным чугуном.

Хотя железо уже было широко распространено в Европе и Северной Америке, мастера-металлисты продолжали экспериментировать с этим металлом, пытаясь улучшить свойства мягкого кованого железа и твердого и хрупкого чугуна. Они пробовали нагревать, колотить и закалывать железо в холодной воде и выяснили, что добавление кислорода к расплавленному металлу при достаточно высоких температурах снижает его примеси и содержание углерода.В результате получился более чистый и прочный металл: сталь.

Одним из способов производства стали было нагревание кованого железа с низким содержанием углерода в глиняных тиглях (или сосудах) с древесным углем в течение примерно десяти дней. Это увеличит содержание углерода настолько, чтобы железо превратилось в сталь. Техника работала, но требовала много времени, большого количества топлива и производила лишь небольшое количество стали. В середине 19 века конвертер Бессемера — печь овальной формы, в которой расплавленный чугун подавался кислородом — произвел революцию в производстве стали.Эндрю Карнеги осознал важность нового преобразователя и заявил: «Время железа прошло. Сталь — король!» Его компания начала производить стальные рельсы с поразительной скоростью, поставляя рельсы, которые железные дороги быстро прокладывали по Северной Америке.

Царство стали продолжилось с развитием легированных сталей в начале 19 века. Добавление элементов, известных своей устойчивостью к коррозии, таких как золото, вольфрам и хром, изменило свойства стали, еще больше упрочив металл.Высокопрочные стали могли сохранять острые кромки при резке на высоких скоростях и использовались в новых отраслях промышленности США. Эдвард Бадд, который произвел первые цельностальные автомобили, доказал превосходную прочность стали, поставив слона на одну из своих стальных машин. Массовое производство самолетов, поездов и автомобилей, ставшее возможным благодаря легированной стали, совершенно по-новому определило современный мир.

Разработка легированных сталей привела к появлению множества новых металлов, каждый из которых обладал уникальными свойствами, но именно определенная комбинация хрома и углерода привела к открытию самой лучшей в отрасли марки стали — нержавеющей.Ранние эксперименты с добавлением хрома в сталь увеличивали прочность металла, но содержали уровни выше или ниже, чем это необходимо для создания нержавеющей стали. Хром на уровне 10-27 процентов в сочетании с содержанием углерода менее 0,2 процента создает пленку на поверхности стали, когда он вступает в реакцию с кислородом воздуха. Эта пленка действует как защитный слой, устойчивый к окислению и нагреванию, придавая нержавеющей стали ее некоррозийные и устойчивые к ржавчине свойства.

Каждый из пионеров в области легирования стали внес свой вклад в развитие нержавеющей стали, но Гарри Брирли, британский эксперт по анализу стали, был первым, кто осознал ее практическое применение.В 1912 году Брирли разработал нержавеющую сталь с содержанием хрома 12,8%. Он проверил некоторые химические вещества на металле и обнаружил, что он устойчив к коррозии. Брерли быстро осознал преимущества высокопрочного, нержавеющего металла и представил его на производстве столовых приборов в Шеффилде, Англия. Он стал первым, кто начал массовое производство изделий из нержавеющей стали.

Нержавеющая сталь с ее гладкой, блестящей поверхностью и невероятной прочностью — это чудо техники. Он произвел революцию в большинстве современных отраслей, включая пищевую, медицинскую и транспортную.Не вызывающие коррозии и стойкие к ржавчине свойства нержавеющей стали сделали ее незаменимой при приготовлении, доставке и хранении пищевых продуктов. Нержавеющая сталь является стандартом для кухонь современных ресторанов, так как ее легко чистить и сушить. Поверхность нержавеющей стали устойчива к окислению при высоких температурах, что делает возможной стерилизацию медицинских инструментов. Его легкий вес и долговечность позволили оптимизировать транспортировку. Обтекаемый дизайн новых поездов, самолетов и автомобилей позволил снизить сопротивление ветру, а такие поезда, как Zephyr, помогли создать движение нового дизайна.Все, от тостеров до пылесосов, имитировали новые автомобили. Нержавеющая сталь проложила путь современным технологиям и продолжает ежедневно влиять на нашу жизнь.

Нержавеющая сталь:
При разработке легированных сталей появилось множество новых металлов, каждый из которых обладал уникальными свойствами, но именно определенная комбинация хрома и углерода привела к открытию самой лучшей в отрасли марки стали — нержавеющей. . Ранние эксперименты с добавлением хрома в сталь увеличивали прочность металла, но содержали уровни выше или ниже, чем это необходимо для создания нержавеющей стали.Хром на уровне 10-27 процентов в сочетании с содержанием углерода менее 0,2 процента создает пленку на поверхности стали, когда он вступает в реакцию с кислородом воздуха. Эта пленка действует как защитный слой, устойчивый к окислению и нагреванию, придавая нержавеющей стали ее некоррозийные и устойчивые к ржавчине свойства.

Каждый из пионеров в области легирования стали внес свой вклад в развитие нержавеющей стали, но Гарри Брирли, британский эксперт по анализу стали, был первым, кто осознал ее практическое применение.В 1912 году Брирли разработал нержавеющую сталь с содержанием хрома 12,8%. Он проверил некоторые химические вещества на металле и обнаружил, что он устойчив к коррозии. Брерли быстро осознал преимущества высокопрочного, нержавеющего металла и представил его на производстве столовых приборов в Шеффилде, Англия. Он стал первым, кто начал массовое производство изделий из нержавеющей стали.

Нержавеющая сталь с ее гладкой, блестящей поверхностью и невероятной прочностью — это чудо техники. Он произвел революцию в большинстве современных отраслей, включая пищевую, медицинскую и транспортную.Не вызывающие коррозии и стойкие к ржавчине свойства нержавеющей стали сделали ее незаменимой при приготовлении, доставке и хранении пищевых продуктов. Нержавеющая сталь является стандартом для кухонь современных ресторанов, так как ее легко чистить и сушить. Поверхность нержавеющей стали устойчива к окислению при высоких температурах, что делает возможной стерилизацию медицинских инструментов. Его легкий вес и долговечность позволили оптимизировать транспортировку. Стремительный дизайн новых поездов, самолетов и автомобилей позволил снизить сопротивление ветру, а такие поезда, как Zephyr, помогли зародить новое дизайнерское движение.Все, от тостеров до пылесосов, имитировали новые автомобили. Нержавеющая сталь проложила путь современным технологиям и продолжает ежедневно влиять на нашу жизнь.

.