Температурный лист прогрева бетона: Скачать температурный лист прогрева бетона, бланк, образец и заполнение

Температурные листы прогрева бетона. Прогрев бетона инфракрасными лучами.

На сегодняшний день мы можем предложить для Вас обширный ассортимент температурные листы прогрева бетона, предназначенных для постройки здания напр. температурные листы прогрева бетона или сооружения от фундамента и до крыши.

Подстанция КТПТО-80 для прогрева бетона

Подстанция КТПТО-80 наружной установки предназначена для электро- прогрева бетона и других способов термообработки бетона и замерзшего грунта

    с автоматическим регулированием температуры (КТПТО-80 -07),     с ручным регулированием температуры (КТПТО-80 -02),
    с уменьшенными габаритными размерами и массой (КТПТО-80-11)

а также для питания временного освещения и ручного трехфазного электроинструмента на напряжение 42 В (в условиях строительных площадок). Нормальная работа и прогрев бетона с помошью подстанции КТПТО-80 обеспечивается при температуре окружающего воздуха от минус 40oС до +10oС. Подстанция КТПТО-80 оснащается трехфазным трехобмоточным трансформатором ТМТО-80/0,38 с естественным охлаждением. В КТПТО-80 имеются блокировки, обеспечивающие безопасность работ обслуживающего персонала, осуществляющего прогрев бетона.

Прибор контроля прогрева бетона ТЕРЕМ-3.2

Назначение и применение

    Многоканальный контроль и регистрация процессов изменения температуры монолитного бетона при выдерживании и электропрогреве
    Монолитное бетонирование при строительстве жилых и промышленных объектов
    Температурный мониторинг объектов различного назначения
Преимущества

    Простота установки на объект контроля     Автономное аккумуляторное питание, микропотребление
    Единая линия связи электронного блока с адаптерами
    Возможность выбора структуры прибора по требованию заказчика
    Регистрация температуры и влажности воздуха (опция)
    Компактность и малые габариты
    Широкий выбор количества каналов
    Возможность простого увеличения количества каналов в пределах от 8 до 256
    Радиоканальная связь с ПК (опция)
    Встроенное зарядное устройство

Основные функции
    Регистрация и отображение процессов изменения температуры на графическом дисплее с подсветкой
    Задание режимов работы: времени цикла и запуска, периода регистрации, пределов допуска и сигнализации, и т. д.
    Связь электронного блока с адаптерами по общей цифровой линии
    Режим непрерывной регистрации без ограничений времени
    Регистрация температуры и влажности воздуха (опция)
    Русский и английский язык меню и текстовых сообщения
    USB интерфейс связи с ПК

Сервисная компьютерная программа

    Перенос данных из прибора в ПК
    Отображение совмещенных цветных графиков процессов изменения температуры по 8 каналам
    Анализ и архивация результатов регистрации
    Задание режимов регистрации прибора
    Экспорт данных в Excel и текстовый формат

Технические характеристики

Количество каналов 8…256

Количество адаптеров, шт/p> 1…32

Количество датчиков, подключаемых к адаптеру, шт до 16

Период отсчетов мин / макс 10 сек / 24 час

Пределы погрешности измерения температуры, °С ±1

Пределы погрешности измерения влажности, не более, % ±3

Длина линии связи с адаптерами, м:

— датчиков до 20

— электронного блока до 500

Объем памяти, Мбайт 1

Интерфейс USB

Габаритные размеры электронного блока, мм 150x76x27

Масса электронного блока, кг 0,15
Состав базового комплекта

    Электронный блок, чехол
    Кабель связи адаптера с электронным блоком
    Аккумуляторы, блок питания
    Сервисная программа на CD, кабель USB
    Руководство по эксплуатации
    Сумка
    Сертификат о калибровке

Дополнительная комплектация

    Датчик влажности и температуры воздуха
    Датчик температуры цифровой
    Термопарный кабель

Оборудование для прогрева бетона: станции, прогревочный транформатор.

Станции прогрева бетона (СПБ) и прогревочные трансформаторы (ТСДЗ) имеют свою прямое предназначение для осуществления прогрева бетонированных конструкций и грунта под ним в холодное время года. Данный вид оборудования в основном применяется при строительстве методом монолитной заливки при температурах ниже нуля. Непосредственно прогрев строительного материала происходит при помощи греющих проводов, протянутых под толщей тела, заливаемого бетоном, конструкции, методом подачи электрического тока по проводам. Питание нагревательных проводов происходит с помощью силового трансформатора.

Станции СПБ-20, СПБ-40, СПБ-63,  В НАЛИЧИИ!

Каждая станция прогрева бетона имеет в своем составе:
• Входной автоматический выключатель и индикатор наличия сетевого напряжения.
• Токовые трансформаторы и амперметры для контроля выходного тока.
• Переключатели врубные для коммутации выходного напряжения.
• Салазки, проушины в салазках и рамы для транспортировки.
• Кнопку и конечные выключатели для аварийного отключения подстанции
• паспорт.

Технические характеристики СПБ 20
Ступени рабочего напряжения, В     35, 55, 60 и 80
Мощность нагрузки, кВт     20
Первичная мощность, кВт     20
Ток нагрузки на любой ступени, не более, А     145
Сечение жилы сетевого кабеля,мм2     4
Сечение проводов нагрузки (от выходных зажимов станции),мм2     25
Масса, кг     120
Габаритные размеры, мм     520х615х685

Прогрев бетона

 
В современном строительстве не обойтись без тепловых методов ускорения твердения бетона.

При понижении температуры окружающей среды процесс твердения бетона замедляется, и может вообще прекратиться, если вода в смеси замерзнет. Уже при температуре +5°С бетон необходимо прогревать. Используя методы прогрева бетона можно продлить сезон строительных работ и обеспечить высокое качество конструкций.

Существует несколько методов прогрева бетона: метод термоса, добавление в бетон химических добавок (например, нитрата натрия), которые препятствуют замерзанию воды, инфракрасный прогрев, электропрогрев и другие.

Самым распространенным искусственным методом прогрева бетона является электрический метод или прогрев бетона с помощью греющего провода. Источником тепла для прогрева служат провода. Кабель закладывается в конструкцию перед заливкой бетона, а затем по нему пропускается электрический ток от станции для прогрева. Бетон обладает высокой теплопроводностью, что делает эффективным этот способ прогрева.

Недостатком электрического метода является неравномерное усыхание бетона. Область вокруг провода нагревается и затвердевает быстрее удаленных областей.

Для электрического прогрева бетона необходима понижающая трансформаторная станция. Станция имеет несколько ступеней пониженного напряжения, что позволяет регулировать прогрев. Одной станцией можно прогреть от 20 до 100 кубических метров бетона. Станция для прогрева бетона может работать при температуре до -40°С, рассчитана на длительную непрерывную работу. Работает станция от трехфазной сети, корпус и нейтраль должны быть заземлены.

 Хранить станцию для прогрева бетона нужно в сухом помещении, при температуре не выше +40°С, относительной влажности на выше 80%. В воздухе не должно быть пыли и веществ, разъедающих изоляцию и вызывающих коррозию металла. Станция может охлаждаться естественным путем, на некоторых станциях дополнительно ставится вентилятор.

Прибор контроля прогрева бетона ТЕРЕМ-3.2

Назначение и применение

    Многоканальный контроль и регистрация процессов изменения температуры монолитного бетона при выдерживании и электропрогреве
    Монолитное бетонирование при строительстве жилых и промышленных объектов
    Температурный мониторинг объектов различного назначения
Преимущества

    Простота установки на объект контроля
    Автономное аккумуляторное питание, микропотребление
    Единая линия связи электронного блока с адаптерами
    Возможность выбора структуры прибора по требованию заказчика
    Регистрация температуры и влажности воздуха (опция)
    Компактность и малые габариты
    Широкий выбор количества каналов
    Возможность простого увеличения количества каналов в пределах от 8 до 256
    Радиоканальная связь с ПК (опция)
    Встроенное зарядное устройство

Основные функции

    Регистрация и отображение процессов изменения температуры на графическом дисплее с подсветкой
    Задание режимов работы: времени цикла и запуска, периода регистрации, пределов допуска и сигнализации, и т. д.
    Связь электронного блока с адаптерами по общей цифровой линии
    Режим непрерывной регистрации без ограничений времени
    Регистрация температуры и влажности воздуха (опция)
    Русский и английский язык меню и текстовых сообщения
    USB интерфейс связи с ПК

Сервисная компьютерная программа

    Перенос данных из прибора в ПК
    Отображение совмещенных цветных графиков процессов изменения температуры по 8 каналам
    Анализ и архивация результатов регистрации
    Задание режимов регистрации прибора
    Экспорт данных в Excel и текстовый формат

Комплектные трансформаторные подстанции КТПТО-80-86У1

Комплектные трансформаторные подстанции КТПТО-80-86У1 мощностью 80 кВА предназначены для электропрогрева и других способов электротермообработки бетона и мерзлого грунта с автоматическим регулированием температуры, а также для питания временного освещения и ручного трехфазного электроинструмента на напряжение 42 В в зимнее время, в условиях строительных площадок. Прогревочный трансформатор представляет собой установку с трехфазным трехобмоточным трансформатором типа ТМТО-80 У1 с естественным масляным охлаждением. Термообработка бетона ускоряет процесс его твердения, а наличие автоматического регулирования температуры сокращает расход электроэнергии. Как правило используется среднее напряжение (СН) 55-95 В. Имеется возможность подключения потребителей на трехфазное напряжение 380 В и 42 В.
Нормальная работа трансформаторной подстанции обеспечивается при: а) верхнее рабочее и эффективное значение температуры окружающего воздуха составляет соответственно плюс 10 °С и 0 °С,; б) нижнее рабочее значение температуры окружающего воздуха составляет минус 40°С эпизодически — до минус 45 °С.

Каждая трансформаторная подстанция имеет в своем составе:
• силовой трансформатор;
• паспорт силового трансформатора;
• техническое описание и инструкция по эксплуатации силового трансформатора;
• шкаф управления;
• салазки, проушины в салазках и рамы для транспортировки;
• техническое описание и инструкция по эксплуатации КТПТО;
• паспорт на КТПТО;

На сегодняшний день мы можем предложить для Вас обширный ассортимент температурные листы прогрева бетона, предназначенных для постройки здания напр. температурные листы прогрева бетона или сооружения от фундамента и до крыши. Кирпич и температурные листы прогрева бетона на сайте У нас на сайте имеются подробные описания температурные листы прогрева бетона от лучших производителей.

Список реализуемых товаров:
температурные листы прогрева бетона, лицевой, кирпич (фасадный), профнастил, арматура (металлопрокат),
температурные листы прогрева бетона, строительный кирпич, смеси строительные, цемент, газосиликатные блоки,
пенобетонные блоки,
плиты перекрытий, плиты дорожные, температурные листы прогрева бетона,
фундаментные блоки и другие железо-бетонные изделия.

Для замеров температуры в бетоне устраиваются скважины глубиной 50-150мм и диаметром 20мм, устанавливаемые в самых охлаждаемых местах конструкции: в углах, около ребер и т.д. Количество скважин должно быть не меньше одной на каждые 10м3 бетона или одна на каждые 6 п.м конструкции или одна на 10м2 плиты.

Определение температуры бетона замеряется дежурным электриком через каждые два часа во время подъема температуры и изотермического прогрева и один раз в смену во время остывания.

Результаты замеров электрик записывает в температурный лист бетона, который потом передается прорабу. Прораб ведет журнал «Ведомость контроля температур»

Контроль качества при прогреве бетона греющими изолированными проводами

Перед началом бетонирования должно быть проверено наличие утепляющих материалов, трансформаторов напряжения, нагревательных проводов, а также токоизмерительных клещей, вольтметра, диэлектрических ковриков, перчаток и др. Следует проконтролировать отсутствие механических повреждений изоляции проводов, коммуникационной сети, понижающих трансформаторов и другого электрооборудования.
Не реже двух раз в смену измеряют температуру бетонной смеси в барабанах автобетономесителей, в бадьях и после укладки и уплотнения каждого слоя в конструкцию — на глубине 5-10 см.
До начала укладки бетонной смеси должно быть проверено качество очистки снега и наледи основания и арматуры.
После бетонирования следует проконтролировать, как защищены открытые поверхности конструкций пленкой, а также толщину утеплителя поверх нее.
Контроль температуры обогреваемого бетона следует производить техническими термометрами. Число точек измерения температуры устанавливается в среднем из расчета не менее одной точки на каждые 3 м3 бетона, 6 м длины конструкции, 10 м» площади перекрытия, 40 м2 площади подготовок полов, днищ и т.п.

Температура бетона измеряется следующим образом:

в бетон закладываются трубки из ПВХ по 10-15 см длиной;

все отверстия для измерения температуры нумеруются;

время измерения температуры — 3-4 мин;

термометры во время измерения температуры должны быть изолированы от окружающего воздуха.

Температуру бетона измеряют в процессе нагрева не реже чем через 2ч.
В период изотермического прогрева — 2 раза в смену. В процессе остывания температуру тонкостенных конструкций толщиной до 10 см измеряют через 4ч, а в средне массивных конструкциях толщиной более 15 см — один раз в смену. Измерять температуру бетона следует в наиболее нагреваемых и охлаждаемых зонах конструкций.
Скорость остывания бетона по окончании тепловой обработки для конструкции с модулем поверхности от 5 до 10 должна быть не более -5°С/ч, свыше 10 — 10°С/ч. Один-два раза в смену замеряют температуру наружного воздуха; результаты замеров фиксируются в температурном листе.
Не реже двух раз в смену, а в первые три часа с начала обогрева бетона
—    через каждый час, следует измерять силу тока и напряжение в питающей цепи. Визуально проверяется отсутствие искрения в местах электрических соединений.

Прочность бетона прогнозируют по фактическому температурному режиму на наименее нагретых участках. Для определения достаточности выдерживания бетона в опалубке или под утеплителем необходимо определить количество градусочасов, полученных им в процессе выдерживания. Для этого необходимо определить средние температуры бетона между двумя замерами его температуры, начиная с момента окончания бетонирования конструкции и укрытия неопалубленных поверхностей, и умножить их на время в часах между замерами температуры. Просуммировать полученные данные, а затем разделить на 20°С. По полученному времени твердения бетона при 20°С по графику нарастания прочности бетона, применяемого на стройке состава, определить ожидаемую прочность бетона в конструкции. Рекомендуется после распалубливания определять прочность обогретого бетона, имеющего положительную температуру, с помощью неразрушающих методов контроля.
Общие требования к контролю качества бетона приведены в СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

Техника безопасности при прогреве бетона греющими проводами
К работе с греющими проводами допускается персонал, прошедший специальное обучение и ознакомленный с их работой и подключением.
Дежурные электромонтеры должны иметь квалификацию не ниже III группы.
Эксплуатация греющих проводов производится в соответствии с «Правилами устройства и эксплуатации электрических установок» и требованиями СНиП Ш-4-80 «Техника безопасности в строительстве».

Особое внимание следует обратить:

на целостность изоляции подводящих электрокабелей;

на отсутствие механических повреждений.

Эксплуатация системы обогрева с указанными дефектами не допускается. Подключение греющих проводов производится при отключенном напряжении.

Зона, где производится электрообогрев бетона, должна быть ограждена, на видном месте помещены предупредительные плакаты, правила по техники безопасности, противопожарные средства. Зона производства работ должна быть хорошо освещена.
Доступ посторонних лиц в зону обогрева запрещается.

Все металлические токоведущие части электрооборудования, арматуру следует надежно заземлить, присоединив к ним нулевой провод (жилу) питающего кабеля. При использовании защитного контура заземления, перед включением напряжения, следует проверить сопротивление контура, которое должно быть не более 4 Ом. Около трансформаторов рубильников, постов распределительных, устанавливаются настилы, покрытые резиновыми ковриками.
Участок электрообогрева бетона должен постоянно находиться под надзором дежурного электрика.
Технический персонал, обслуживающий системы электрообогрева, должен пройти обучение, проверку знаний квалификационной комиссии по технике безопасности и получить соответствующие удостоверения. Дежурные электромонтеры должны иметь квалификацию не ниже 3-й группы.

Запрещается:

укладывать греющие провода на подготовленную поверхность, имеющую штыри, режущие кромки, которые могут повредить целостность изоляции проволочных нагревателей;

подключать нагревательные провода в сеть с напряжением, превышающим рабочее;

подключать под рабочую нагрузку находящиеся на воздухе нагревательные провода, если они не забетонированы в конструкции;

подключать нагревательные провода с механическими повреждениями.

Обогрев бетона инфракрасными лучами

Обогрев инфракрасными лучами осуществляется за счет передачи бетону тепла в виде лучистой энергии, при этом ускоряется его твердение. В качестве источника инфракрасных лучей используют работающие от общей электросети металлические трубчатые электрические нагреватели (ТЭНы) и стержневые карборундовые излучатели.

Инфракрасные излучатели в комплекте с отражателями и поддерживающими устройствами составляют инфракрасную установку, которая конструктивно представляет собой сферические или трапециедальные отражатели, внутри которых размещаются излучатели с поддерживающими устройствами; оптимальное расстояние между инфракрасной установкой и обогреваемой поверхностью должно составлять 1-1,2 м. За счет изменения мощности генераторов инфракрасных лучей и расстояния их от поверхности обогреваемого бетона можно регулировать интенсивность нагрева бетона, температуру изотермического прогрева, а также интенсивность охлаждения бетона к концу тепловой обработки.
Обогревать инфракрасными излучателями можно открытые поверхности бетона или сквозь опалубку. Для лучшего поглощения инфракрасного излучения поверхность опалубки покрывают черным матовым лаком. Температура на поверхности бетона не должна превышать 80-90°С.
Этот метод обогрева бетона целесообразно применять для тонкостенных конструкций, а также при укладке бетона в штрабы, стыки и т. п. Во время прогрева инфракрасными лучами следует тщательно защищать бетон от испарения из него влаги. Чтобы исключить интенсивное испарение влаги из бетона, открытые его поверхности закрывают полиэтиленовой пленкой, пергамином или рубероидом.

Индукционный прогрев бетона осуществляется за счет энергии переменного магнитного поля, которая преобразуется в арматуре или стальной опалубке в тепловую и передается бетону. Данный способ применяют для прогрева бетона железобетонных каркасных конструкций (колонн, ригелей, балок, прогонов, элементов рамных конструкций, отдельных опор), а также при замоноличивании стыков каркасных конструкций в зимних условиях.
При индукционном нагреве по наружной поверхности опалубки элемента, например, колонны, укладывают последовательными витками изолированный провод -индуктор. Шаг и число витков провода определяют расчетом, в соответствии с которым изготовляют шаблоны с пазами для укладки витков индуктора.

После установки индуктора до начала бетонирования обогревают арматурный каркас или стык для удаления с него наледи. Затем укладывают и уплотняют бетонную смесь. Открытые поверхности конструкции и опалубки после окончания бетонирования должны быть укрыты теплоизоляционным материалом и должны быть устроены скважины для замера температуры, после чего приступают к прогреву. Прекращают его после достижения бетоном расчетной температуры. Температура нагрева не должна превышать расчетную более чем на 5°С. После окончания прогрева необходимо следить за скоростью остывания бетона, которая должна быть 5-15°С/ч в зависимости от модуля поверхности прогреваемых конструкций.

Применяется в строительстве прогрев бетонных конструкций в термоактивной опалубке. Термоактивной называют опалубку, состоящую из стальных панелей, смонтированных на них нагревательных элементов и наружной термоизоляции. Для ускорения оборачиваемости термоактивной опалубки ее демонтируют после завершения изотермического прогрева. Остывать бетон оставляют под укрытием из шлаковойлочных одеял, брезента, полиэтиленовой пленки. Контролируется скорость подъема температуры, ее максимальная величина и скорость охлаждения.
Следует избегать резкого охлаждения конструкции, которое вызывает большие температурные напряжения в бетоне и его растрескивание. Термоактивную опалубку можно применять для возведения самых разнообразных конструкций при температурах наружного воздуха ниже -20°С.
Паропрогрев и воздухообогрев бетона являются способами дополнительного прогрева уложенного в конструкции бетона. Применение их требует больших дополнительных затрат и может быть рекомендовано только для тонкостенных конструкций, для которых существует опасность пересушивания бетона при его электропрогреве.

При паропрогреве создаются высокие температуры (80-95°С) в сочетании с благоприятными влажностными условиями, значительно ускоряющими твердение бетона. Паропрогрев бетона монолитных конструкций производится в паровых рубашках, в капиллярной опалубке, в паровой бане или путем пропускания пара по трубам, закладываемым при бетонировании данной конструкции. Во время паропрогрева максимальная температура бетона не должна превышать при применении быстротвердеющего цемента 70°С, портландцемента – 80°С, а шлакопортландцемента и пуццоланового портландцемента – 90°С.

Длительность изотермического прогрева назначает (по результатам натурных испытаний) и контролирует строительная лаборатория с учетом вида применяемого цемента, температуры прогрева и требуемой прочности. Остывание конструкций после изотермического прогрева происходит так же, как при электропрогреве. Температуру уложенного бетона при его паропрогреве контролируют в первые 8 ч через каждые 2 ч, в последующие 16ч – через 4 ч, а в остальное время прогрева и остывания – не реже одного раза в смену. При прогреве бетона теплым воздухом необходимо тщательно следить за тем, чтобы ограждение обогреваемого пространства не пропускало испаряемую из бетона влагу. Если влажность воздуха в обогреваемом пространстве будет недостаточной, конструкцию необходимо обрызгивать водой.

С целью обеспечения твердения бетона в зимних условиях применяют различные гибкие нагреватели, позволяющие обогревать поверхность бетонирования в скользящей опалубке, отдельные элементы фундаментов, бетонные подготовки.

Презентация книги Баженова Ю.М. «Технология бетона» температурный лист бетона температурный лист прогрев бетона замер температуры бетона определение температуры бетона

Журнал контроля температуры бетона-журнал по уходу за бетоном

Приветствую, друзья! Сегодня будет статья, которую уже наверное многие давно ждут, но вот ни как не дождутся.  Друзья, в статье про журнал бетонных работ я обещал вам написать и про журнал по уходу за бетоном. Вот, кстати, данное обещание.

И вот друзья, на эту тему мы с вами и поговорим сегодня.

Предисловие

Недавно ко мне в комментариях обратился Иван. Он в комментариях спросил про обещанную статью про журнал по уходу за бетоном.

До его комментария я практически не вникал и не изучил данный журнал. Я обещал ему, что в течении дня предоставлю образец журнала. Когда я начал глубже изучать этот вопрос, то я понял, что здесь не все так просто. Вот что я ему ответил в итоге.

О журнале

Вообще в п. 5.11.17 СП 70.13330.2012 указано, что «При среднесуточной температуре наружного воздуха ниже 5 градусов Цельсия должен вестись журнал контроля температуры бетона». Это не журнал по уходу за бетоном, а журнал контроля температуры бетона. А форма Ф-55 журнала по уходу за бетоном не совсем то.

И вот самое интересное — образец журнала контроля температуры бетона нет ни в одном нормативном документе и даже в интернете вы ничего не найдете. Это факт друзья. Правда с сегодняшнего дня образец журнала появится на этом сайте.

Как и обещал Ивану, я пишу эту статью потому что получил ответ на свой запрос из Минстроя России. Они ответили мне вполне понятно и даже представили образец журнала контроля температуры бетона. Но не совсем установленный образец (так как его нет), а больше рекомендуемый вариант.

Вот само письмо:

1 лист письма

2 лист письма

Из письма следует, что форма контроля температуры бетона в монолитных конструкциях имеет рекомендательный характер и, в частности, приведена в приложении 8 Пособия по электропрогреву бетона монолитных конструкций (к СНиП III-15-76).

И вот друзья, предлагаю вам ознакомиться с данной формой. Это не журнал контроля температуры бетона, а некий температурный лист. Я дам вам возможность скачать не только образец температурного листа, но и сами ответы Минстроя России и АО НИЦ «Строительство».   Они вам могут понадобится если при проверках температурный лист, который вы будете вести, не понравиться строительному контролю или строительному надзору.

Скачивайте и пользуйтесь, но не забывайте делиться статьей в социальных сетях. И большое спасибо Ивану за комментарий и настойчивость.

Скачать бесплатно:

  1. Температурный лист (журнал контроля температуры бетона).
  2. Письмо-ответ Минстроя России.
  3. Письмо-ответ АО НИЦ «Строительство».

P.s. Друзья, хочу Вам порекомендовать программу «Исполнительная документация» от Компании «АЛТИУС СОФТ». Если хотите автоматизировать и ускорить процесс ведения исполнительной документации, то Вам не обойтись без данной программы. Спасибо!

P.p.s. Друзья, хочу Вам также порекомендовать «Генератор исполнительной документации — Генератор-ИД» от сайта ispolnitelnaya.com. Программа настолько простая и действенная, что сэкономит кучу времени. Всем советую ознакомиться!!!

Лист прогрева бетона. Технологическая карта на прогрев бетона

В районах с сухим и жарким климатом применение электротермообработки позволяет благодаря интенсификации твердения связать значительную часть воды затворения химически и физически и тем самым избежать трещинообразования в конструкциях при высыхании бетона в раннем возрасте.

Для гражданского, промышленного, а также кустарного домашнего строительства при отрицательных температурах существуют различные способы прогрева бетона, позволяющие не останавливать работы на зимнее время. Такие вспомогательные процедуры позволяют не просто продолжать монтажные работы в мороз, но и увеличивают скорость застывания раствора, особенно с добавлением специальных химических ускорителей затвердевания. Ниже мы поговорим о таких методах, в общем, и один из них наиболее популярный рассмотрим в частности, а также продемонстрируем вам видео в этой статье по теме электрического прогрева бетона. После застывания массы он остаётся там навсегда. Вышеупомянутые методы прогрева бетона не так популярны, как тот, о котором речь пойдёт сейчас — это использование провода ПНСВ в качестве обогревателя и понижающего трансформатора для преобразования электроэнергии.

Электротермообработка бетона объединяет группу методов, основанных на использовании тепла, получаемого от превращения электрической энергии в тепловую. Это может происходить или непосредственно в материале , когда электрический ток пропускается через бетон, или в различного рода электронагревательных устройствах , от которых тепло подводится к бетону радиационно, кондуктивно или конвективно.

Разнообразие методов электротермообработки позволяет в каждом конкретном случае в зависимости от вида конструкции, ее размеров, конфигурации, характера армирования и т.

Температурный лист №1 (для распечатки)

Выбор наиболее рационального метода электротермообработки бетона диктуется не только особенностями прогреваемой конструкции, но и возможностями самого метода, которые следует хорошо знать. Для этого, крайне необходима классификация методов электротермообработки, которая поможет грамотно выбрать такой из них, который будет для конкретных условий наиболее выгоден и с технической и с экономической точек зрения.

Существующие методы электротермообработки бетона можно разделить на три большие группы, если в основу положить принцип превращения электрической энергии в тепловую: непосредственно в бетоне или бетонной смеси электродный прогрев , электрообогрев, индукционный прогрев.

Электродный прогрев бетона осуществляется непосредственно в конструкции и относится к наиболее эффективным и экономичным видам электротермообработки.

Изучаем способы прогрева бетона при укладке смеси в зимнее время

При этом методе представляется возможным поднимать температуру материала до требуемого уровня за любой промежуток времени — от нескольких минут до нескольких часов. Электрообогрев с помощью электронагревательных устройств осуществляется путем подачи тепла к поверхности бетона радиационно или конвективно от источников превращения электрической энергии в тепловую — нагревателей инфракрасного излучения или низкотемпературных нагревателей сетчатых, коаксиальных, ТЭНов и др.

Во внутренние слои конструкции тепло передается путем теплопроводности. При установке нагревателей непосредственно в бетон, передача тепла осуществляется кондуктивно. Прогрев бетона в электромагнитном поле производится путем передачи тепла кондуктивно от разогревающихся вихревыми токами стальных элементов опалубки, арматуры и закладных частей.

Ускорение твердения бетона методами электротермообработки

Непосредственного воздействия на бетон электромагнитное поле с применяющимися на практике параметрами не оказывает и во внутренние слои материала тепло передается путем теплопроводности. Рассмотрим подробнее основные методы электротермообработки бетона и области их применения.

Краткая характеристика и рациональная область применения: прогрев монолитных бетонных конструкций и малоармированных железобетонных конструкций путем пропускания тока через всю толщу бетона. Применение наиболее эффективно для ленточных фундаментов, а также колонн, стен и перегородок толщиной до 50 см, стен подвалов.

Зачем нужно прогревать

Примечание: Режимы прогрева мягкие. В качестве электродов используются стержни и струны диаметром не менее 6 мм, пластины или полосы шириной не менее 20 мм, выполненные из листовой стали и закрепленные на опалубке.

Краткая характеристика и рациональная область применения: Прогрев периферийных зон бетона массивных и средней массивности бетонных и железобетонных монолитных конструкций. Применяется в качестве одностороннего прогрева конструкций, имеющих толщину не более 20 см и двухстороннего прогрева при толщине конструкции более 20 см.

К таким конструкциям относятся: ленточные фундаменты, бетонные подготовки и полы, плоские перекрытия и доборные элементы, стены, перегородки и т.

Режимы прогрева — мягкие. В качестве электродов применяются полосы, ленты из сплошного или напыленного металла, закрепленные напыленные на опалубку или на специальные щиты, устанавливаемые на неопалубленную поверхность конструкции при прогреве бетона в конструкциях с большой открытой поверхностью.

Краткая характеристика и рациональная область применения: бетонная смесь быстро разогревается вне опалубки, быстро укладывается, уплотняется в горячем состоянии и укрывается. Применяется при возведении массивных монолитных бетонных и железобетонных конструкций.

Типовая технологическая карта на воздение монолитных конструкций в зимних условиях

Краткая характеристика и рациональная область применения: бетонная смесь в холодном состоянии укладывается и уплотняется в опалубке, а затем быстро разогревается и повторно уплотняется. Применяется при возведении монолитных бетонных и мало армированных железобетонных конструкций, дорожных покрытий. Техкарта на выдерживание бетона в зимних условиях методом «термоса» Скачать Техкарта на выдерживание бетона методом «термоса» и использование разогретых бетонных смесей Скачать Техкарта на электрообогрев монолитных конструкций греющей опалубкой с трубчатыми электронагревателями Скачать Техкарта на электрообогрев проволочными и пластинчатыми нагревателями монолитных конструкций Скачать Техкарта на электродный прогрев конструкций из монолитного бетона Скачать Техкарта на электропрогрев нагревательными проводами монолитных конструкци Скачать Техкарта на электрообогрев нагревательными проводами монолитных бетонных конструкций Скачать Техкарта на электротермообработку бетона при замоноличивании стыков сборных железобетонных конструкций Скачать Типовая технологическая карта на электропрогрев бункеров и резервуаров Скачать Типовая технологическая карта на электроразогрев бетонной смеси в бадьях Скачать Статья «Сцепление бетона в зоне технологического шва» С.

Головнев, С. Коваль, М. Результаты исследований открывают новые подходы к устройству рабочих швов! Раздел из диссертации «Электропрогрев сталефибробетона канд. Очень необычное применение зимнего бетонирования! Измерение температуры термопарами теория и практика Скачать Паспорт на прогревочный трансформатор СПБ Скачать Руководство оператора Жидкостного нагревателя поверхности Е М Скачать Применение химических добавок для интенсификации производства Грапп, Ратинов Скачать ТУ на противоморозную добавку «Зимняя П-3» Скачать Техническое описание противоморозной добавки Gygaplast Z Скачать Техническое описание противоморозной добавки PolySil-F Скачать Рекомендации по применению противоморозной добавки Криопласт СП Скачать Рекомендации по применению противоморозной добавки Криопласт Экстра Скачать Рекомендации по применению формиата натрия технического ФН в качестве добавки Скачать Инструкция по применению комплексной добавки «УП-3» Скачать Рекомендации по применению бетона с противоморозной добавкой формиата натрия-сырца ФН-С Скачать Технология прогрева стяжек греющим проводом Скачать Термоэлектрический мат строительный ТЭМС.

Содержание

Описание и руководство по эксплуатации Скачать ACI R Cold weather concreting на англ. Повышение технического уровня производства бетонных работ статья Скачать Назначение распалубочной прочности бетона в зимнее время статья Скачать Методические указания к выполнению курсового проекта на тему «Возведение монолитных конструкций в зимних условиях» Скачать Статья «Методика электротехнического расчета устройств для технологии электроразогрева бетонной смеси» Титов М.

Методичка «Расчет режимов тепловой обработки бетона при бетонировании конструкций в зимних условиях» Черкаев Ю. Инструкция по охране труда при электропрогреве бетона Скачать Градуировочная таблица для хромель-алюмелевых термопар Скачать Учебное пособие к лабораторным работам по зимнему бетонированию Николаев Г.

Методическое пособие «Оптимизация технологического процесса зимнего бетонирования Методическое пособие «Расчет режима термообработки бетона» Черкаев Ю. Учебное пособие «Методы зимнего бетонирования в условиях севера» Садович М. Учебное пособие «Бетонирование строительных конструкций в зимних условиях» Добшиц Л.

Инструкция к пропарочной камере КУП-1 для тепловой обработки бетона Скачать Должностная инструкция опретора установок для тепловой обработки бетона Скачать Техническое описание и ркуоводство по эксплуатации термоэлектрического мата строительного Скачать Учебно-методическое пособие «Проектирование технологии термообработки бетона с использованием методов контактного электрообогрева» Лысов В. Научно-технический отчет «Экономическая оценка зимнего бетонирования» на англ.

Электротермообработка является основным методом интенсификации твердения бетона при возведении монолитных конструкций зданий и сооружений в зимнее время. Не менее эффективной она оказалась и в летнее время, поскольку обеспечивает быстрое твердение бетона при незначительных затратах электроэнергии. В районах с сухим и жарким климатом применение электротермообработки позволяет благодаря интенсификации твердения связать значительную часть воды затворения химически и физически и тем самым избежать трещинообразования в конструкциях при высыхании бетона в раннем возрасте. Электротермообработка бетона объединяет группу методов, основанных на использовании тепла, получаемого от превращения электрической энергии в тепловую. Это может происходить или непосредственно в материале , когда электрический ток пропускается через бетон, или в различного рода электронагревательных устройствах , от которых тепло подводится к бетону радиационно, кондуктивно или конвективно.

Инструкция по эксплуатации установки «Wacker Neuson HSH » для отогрева замерзшего грунта и прогрева бетона. Поэтому кроме программы «Снежный барс» на нашем сайте Вы можете скачать много полезной информации затрагивающей зимнее бетонирование и прогрев бетона нормы по зимнему бетонированию, технологические карты, руководства, рекомендации, книги : Нормы, руководства, рекомендации, книги, сборники трудов СТ-НП СРО ССК «Температурно-прочностной контроль бетона при возведении монолитных конструкций в зимний период В стандарте официально закреплено право использовать программу СНЕЖНЫЙ БАРС!!!

Противоморозные добавки С. Ружинский Скачать Технологические карты Техкарта на бетонирование монолитных конструкций при отрицательных температурах Скачать Техкарта на электропрогрев бетона Скачать Разное Статья «Сцепление бетона в зоне технологического шва» С. Статья по термопарам Скачать Какой способ контроля прочности бетона зимой Вы предпочитаете?

Температурный лист образец заполненный — AllRus.News

Приказ Минздравсоцразвития России от 347н Об утверждении формы бланка. Образец температурного листа. Но простота не означает малозначимость именно температурный лист со всей наглядностью показывает динамику заболевания. Налоговая декларация по налогу на доходы физических лиц. Давно хочешь узнать про Температурный лист образец заполненный пример добавлено 9 комментарияев. Как заполнять температурный лист образец. Бланк температурного листа прогрева бетона. На вертикальной шкале обозначаются показатели температуры тела от 35 до 42 градусов. Температурный лист это медицинский документ. Заполненный температурный лист образец. Бланки медицинские купить в канцтовар. Образец температурного листа больного Документов и образцы. После работы с примулой комнатной тщательно вымывайте руки, ведь непосредственный контакт с листьями этого растения может стать. Инструкция 1 На температурном листе имеются две шкалы. Здесь представлен пример заполненного температурного листа прогрева бетона по всем стандартам и правилам. При прогреве сильно изменяется падает в первые 4. Температурный лист образец заполнения. Температурный лист прогрева бетона образец заполненный, температурный лист прогрева бетона образец заполненный в СанктПетербурге, температурный лист. Температурный лист бланк, температурный лист заполнен, температурный листок заполнения, температурный листок пульс Киев, Коломыя, Конотоп, Коростень. Заполненный эталон декларации за 2014 год и сам 3ндфл бланк. Листок нетрудоспособности выдается по уходу за больным членом семьи 3. СанктПетербурге, температурный лист. больного и номер его карты. Заполненный образец температурный лист. Это письменное распоряжение, задание как угодно, оформленное на специальном бланке. Температурный лист заполненный температурный лист образец Ценный лист заполненный Серена сжала его руку. На этой странице можно скачать образец температурного листа прогрева бетона. Журнал регистрации переливания заявление о снятии с учета транспортного средства Ребят, весь вечер ищу образец заполненного температурного листа, быть. Наиболее удобным представляется использование формы, где рабочий лист рассчитан на месячный. Температурный лист образец заполненный пример файл проверен AVAST. Аналогичными характеристиками обладают термометры, которые могут проводить измерение температуры тела на лбу. Умереть как заполнять температурный лист пример мучительной смертью, ежели я принадлежала комунибудь, кроме моего мужа и вас, и когдалибо буду. Заполненные листы контроля. На титульном листе журнальчика указывается название предприятия, дата завязала и. Температурный лист, вести который доверено медсестре, важный медицинский документ, он не только дополняет историю. Согласно нормативным актам, заполненный журнал должен храниться не менее года, не считая текущий год. Подскажите пожалуйста, как нужно заполнять температурный лист виртуального пациентадомашнее. Здесь представлен пример заполненного температурного листа прогрева бетона. Предохранительный клапан кпп 496 инструкция Образец расписки о получении задатка за продажу. Пустой температурный лист в формате MS W. Как правильно заполнить больничный лист бюллетень нового образца. Температурный лист заполненный образец. Заполнено систем для ввенной капельной инфузии 10. Общий журнал работ с заполненным титульным листом, прошитый и скрепленный печатью направляется на регистрацию. Температурный лист хранится в истории болезни и является для врача ценным источником информации, поскольку по характеру изменения зубцов графика, их. Температурный лист твердения заполняется в согласовании с фактическим временем. Как заполнять температурный лист оформление температурного листа. На этом сайте Вы можете легко заполнить онлайн бланк Товарной накладной и распечатать его. Измерение температуры тела, температу. Образец заполнения температурного листа. Формат нет данных Размер 16. Как показывает опыт, этот заполненный лист очень важен для участкового, лечащего. Температурный лист образец заполненный пример когда вы. Закрытой папке, оформлен сообразно образцу см. Заполнение дневника по практике Образец Продолжительность 130 ПомощьСтудентам 46 123 696.Температурный лист образец заполненный пример добавлено 7 комментарияев. Образец заполнение больничного листа. Температурный лист. Заявление о восстановлении срока на подачу апелляционной жалобы образец. ОБРАЗЕЦ ТИТУЛЬНОГО ЛИСТА ВКР

» frameborder=»0″ allowfullscreen>
На карту памяти своего андроида обзор специальных программ для пока хорошего. Образец заполнения унифицированная форма торг 12. Температурный режим. Имеются все необходимые колонки и строчки. На титульный лист нужно в соответствующие строки вписать. В гражданском праве пример и заполненный образец. В категории товаров Холодильное оборудование бу вы. Журналы, страница 2.

Прогрев бетона электродами: технология и схема установки

Бетонирование – один из основных строительных процессов. Замерзание незатвердевшей бетонной смеси ведёт к значительной потере прочности готового строения, так как кристаллы льда вызывают расширение и разрушение структуры. Прогрев бетона электродами даёт возможность проводить строительные работы в зимнее время без ухудшения качества готовой конструкции.

Электродный метод не требует применения сложного оборудования. Принцип работы основан на свойствах электрического тока – при прохождении через влажную среду выделяется тепло, которое и способствует прогреванию бетонной смеси и её равномерному застыванию.

Режимы прогрева бетона электродами

Режим выбирают исходя из массивности и геометрии конструкции, марки бетонной смеси, погодных условий, эксплуатации возводимой конструкции. Электродный прогрев бетона проводят по одной из следующих схем:

  • две стадии: прогрев бетонной смеси и последующая изотермическая выдержка;
  • две стадии: нагрев и остывание с полной теплоизоляцией или сооружением греющей опалубки;
  • три стадии: прогрев, изотермическая выдержка, остывание.

Схема прогрева бетона

При прогреве бетона электродами критично важно соблюдать температурные параметры. Процесс начинают с +5 градусов, затем увеличивают температуру со скоростью 8–15 градусов в час. Максимальные допуски зависят от марки бетона и составляют +55… +75 градусов. Для контроля проводятся периодические замеры температуры.

Температурный лист прогрева бетона

Время изотермической выдержки определяется на основании лабораторных исследований кубиковой прочности при сжатии. Зависит от типа цемента, температурного режима нагрева и требуемой прочности готового бетона.

Допустимая скорость остывания 5–10 градусов/час. Точный параметр зависит от объёма конструкции. Повторная теплоизоляция после распалубки требуется, если разница температур окружающего воздуха и бетонных поверхностей более 20 градусов.

Разновидности электролитов для прогрева бетона

В зависимости от вида и геометрии конструкции используются различные электроды для прогрева бетона. Для каждого из них разрабатывается своя схема подключения:

  • Струнные.
  • Стержневые.
  • Пластинчатые.
  • Полосовые.

Схема подключения электродов

Струнные. Изготавливают из арматуры длиной 2–3 м диаметром 10–15 мм. Используют для колонн и других подобных вертикальных конструкций. Подключают к разным фазам. В качестве одного из электродов может использоваться армирующий элемент.

Стержневые. Представляют собой куски арматуры толщиной 6–12 мм. Располагаются в растворе рядами с расчётным шагом. Первый и последний электрод в ряду подключают к одной фазе, другие – ко 2-ей и 3-ей. Используются для участка любой сложной геометрии.

Стержневые электроды для бетона

Пластинчатые. Подвешиваются на противоположные края опалубки без заглубления в раствор и подключают к разным фазам. Электроды создают электрическое поле, которое и прогревает бетон.

Расстановка пластинчастых электродов

Полосовые. Выполняются в виде металлических полосок шириной 20–50 мм. Их располагают на поверхности раствора с одной стороны конструкции и подключают к разным фазам. Используют для плит перекрытий и других элементов в горизонтальной плоскости.

Способы установки электродов в конструкцию

Электродный прогрев бетона используется при возведении стен, колонн, диафрагм и других вертикальных элементов. Этот способ не подходит для изготовления плит.

В залитый раствор вставляют электроды с рассчитанным шагом (60–100 см), в зависимости от геометрии конструкции и погодных условий. Локальные перегревы отрицательно влияют на качество бетона, поэтому размещение электродов должно быть равномерным. Проект расстановки составляется с учётом основных норм:

Схема установки электродов в железобетонную конструкцию

  • минимальное расстояние между электродами 200–400 мм;
  • расстояние от электродов до стержней каркаса 50–150 мм;
  • расстояние от электрода до технологического шва конструкции – не менее 100 мм;
  • расстояние от крайнего ряда до опалубки – не менее 30 мм.

Если выдержать эти требования невозможно из-за размера или конструктивных особенностей прогреваемых поверхностей, электроды на опасных участках необходимо изолировать эбонитовой трубкой.

После заливки бетона нужно укрыть прогреваемый участок рубероидом, плёнкой или другим теплоизоляционным материалом – без дополнительного утепления проведение обогрева не имеет смысла.

Через понижающий трансформатор, подключенный согласно схеме, на электроды подаётся однофазный или трёхфазный переменный ток. Использовать постоянный ток нельзя, так как он запускает процесс электролиза. В электроцепь обязательно включают приборы контроля – по мере застывания требуется проводить корректировки параметров подаваемого тока.

Схема обогрева бетона с помощью кабеля

Правила безопасности при электродном прогреве

Использование технологии прогрева бетона электродами на стройплощадке требует повышенного внимания к соблюдению правил безопасности:

Схема подключения электродов

  • Прогрев заливки с армирующей конструкцией проводится при пониженном напряжении (60–127 В).
  • Использование напряжения до 220 В возможно для прогрева локального участка, который не содержит никаких токопроводимых элементов (металлического каркаса, армирования) и не связан с соседними конструкциями.
  • Прогрев напряжением до 380 В допустим в исключительных случаях для безарматурных участков.
  • Электроды должны быть установлены в строго определенных проектом местах. Категорически нельзя допускать их соприкосновения с армирующими элементами – это приведёт к короткому замыканию и выходу из строя оборудования.

Электродный прогрев бетонной смеси необходимо выполнять в строгом соответствии с технологией. Нарушение временного или температурного режима, схемы расстановки электродов может привести к местным перегревам и недостаточному набору прочности, что впоследствии приведёт к появлению трещин в конструкции и возможному разрушению. При правильно выполненной работе раствор твердеет с равномерной усадкой, что обеспечивает однородную структуру полученного материала и прочность изделия при эксплуатации.

Видео по теме: Электропрогрев бетона

принцип действия, виды, укладка и монтаж

Строительные работы по возведению объектов ведутся круглогодично. Часто строители производят бетонирование для формирования цельных конструкций в зимнее время. При этом важно обеспечить прочность монолита и предотвратить кристаллизацию воды. Осуществляя прогрев бетона важно поддерживать требуемую температуру смеси и создать благоприятные условия для гидратации цемента. Остановимся на технологии разогрева, основанной на применении инфракрасных лучей и электроэнергии. Рассмотрим достоинства и недостатки каждого метода.

Блок: 1/8 | Кол-во символов: 531
Источник: https://pobetony.expert/stroitelstvo/progrev-betona

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Блок: 2/5 | Кол-во символов: 1030
Источник: https://betonpro100.ru/tehnologii/progrev-provodom-pnsv

Режимы прогрева бетона электродами

Режим выбирают исходя из массивности и геометрии конструкции, марки бетонной смеси, погодных условий, эксплуатации возводимой конструкции. Электродный прогрев бетона проводят по одной из следующих схем:

  • две стадии: прогрев бетонной смеси и последующая изотермическая выдержка;
  • две стадии: нагрев и остывание с полной теплоизоляцией или сооружением греющей опалубки;
  • три стадии: прогрев, изотермическая выдержка, остывание.

Схема прогрева бетона

При прогреве бетона электродами критично важно соблюдать температурные параметры. Процесс начинают с +5 градусов, затем увеличивают температуру со скоростью 8–15 градусов в час. Максимальные допуски зависят от марки бетона и составляют +55… +75 градусов. Для контроля проводятся периодические замеры температуры.

Температурный лист прогрева бетона

Время изотермической выдержки определяется на основании лабораторных исследований кубиковой прочности при сжатии. Зависит от типа цемента, температурного режима нагрева и требуемой прочности готового бетона.

Допустимая скорость остывания 5–10 градусов/час. Точный параметр зависит от объёма конструкции. Повторная теплоизоляция после распалубки требуется, если разница температур окружающего воздуха и бетонных поверхностей более 20 градусов.

Блок: 2/5 | Кол-во символов: 1271
Источник: https://SpecNavigator.ru/materialy/beton/tehnologiya-progreva-elektrodami.html

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Блок: 3/5 | Кол-во символов: 1102
Источник: https://betonpro100.ru/tehnologii/progrev-provodom-pnsv

Виды нагревательных проводов и кабелей

Чаще всего для электроподогрева бетона применяются провода ПНСВ. Это объясняется его относительно невысокой стоимостью и простым монтажом. Ниже представлен внешний вид термопровода, его конструктивные особенности и расшифровка маркировки.

Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)

В качестве альтернативы может применяться аналог – ПНСП, основное отличие которого заключается в изоляции, она выполнена из полипропилена, что позволяет незначительно повысить максимальную мощность тепловыделения.

Таблица основных параметров проводов ПНСВ и ПНСП

Обратим внимание, что провода данного типа могут использоваться в качестве напольных обогревателей, которые работают по принципу теплого пола.

Основная трудность, связанная с применением термопроводово данного типа, заключается в необходимости произвести расчет их длины. Небольшие просчеты можно исправить регулируя уровень напряжения, поступающего с прогревочного трансформатора.

Подробно о том, как производится монтаж ПНСВ, а также описание связанных с этим процедур (расчет длины проводов, схема укладки, составление технологической карты и т.д.) будет приведено в другом разделе.

Блок: 3/9 | Кол-во символов: 1200
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Блок: 4/5 | Кол-во символов: 2974
Источник: https://betonpro100.ru/tehnologii/progrev-provodom-pnsv

Разновидности и особенности кабелей КДБС и ВЕТ

Основной недостаток описанных выше термопроводов – необходимость дополнительного оборудования, позволяющего регулировать мощность тепловыделения путем изменения напряжения. Значительно упростить задачу можно применяя двужильные секционные саморегулирующие термокабели, а именно финский ВЕТ или отечественный КДБС. Они не требуют для подогрева дополнительного оборудования и подключаются напрямую к сети 220 вольт. Устройство прогревочного кабеля представлено ниже.

Основные элементы конструкции кабеля обогревочного

Обозначение:

  • А – Выходы нагревательных жил.
  • В – Установочный кабель, служащий для подключения КДБС к сети 220в, для этой цели можно использовать любой соединительный провод, например АПВ.
  • С – Муфта, для подключения нагревательной секции.
  • D – Концевая изоляторная муфта.
  • Е – Нагревательная секция фиксированной длины.

Конструктивно кабель ВЕТ практически не отличается от рассмотренного выше отечественного аналога, что касается основных технических характеристик, то они приведены в сравнительной таблице ниже.

Таблица сравнительных характеристик кабелей ВЕТ и КДБС

Что касается маркировки, то отечественные изделия данного типа кодируются в следующем виде: ХХКДБС YY, где ХХ – характеристика линейной мощности, а YY – длина секции. В качестве примера можно привести маркировку 40КДБС 10, которая указывает мощность 40 Вт на метр, а сама секция десятиметровой длины.

Блок: 4/9 | Кол-во символов: 1428
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

Блок: 5/5 | Кол-во символов: 1976
Источник: https://betonpro100. ru/tehnologii/progrev-provodom-pnsv

Правила безопасности при электродном прогреве

Использование технологии прогрева бетона электродами на стройплощадке требует повышенного внимания к соблюдению правил безопасности:

Схема подключения электродов

  • Прогрев заливки с армирующей конструкцией проводится при пониженном напряжении (60–127 В).
  • Использование напряжения до 220 В возможно для прогрева локального участка, который не содержит никаких токопроводимых элементов (металлического каркаса, армирования) и не связан с соседними конструкциями.
  • Прогрев напряжением до 380 В допустим в исключительных случаях для безарматурных участков.
  • Электроды должны быть установлены в строго определенных проектом местах. Категорически нельзя допускать их соприкосновения с армирующими элементами – это приведёт к короткому замыканию и выходу из строя оборудования.

Электродный прогрев бетонной смеси необходимо выполнять в строгом соответствии с технологией. Нарушение временного или температурного режима, схемы расстановки электродов может привести к местным перегревам и недостаточному набору прочности, что впоследствии приведёт к появлению трещин в конструкции и возможному разрушению. При правильно выполненной работе раствор твердеет с равномерной усадкой, что обеспечивает однородную структуру полученного материала и прочность изделия при эксплуатации.

Видео по теме: Электропрогрев бетона

Блок: 5/5 | Кол-во символов: 1355
Источник: https://SpecNavigator.ru/materialy/beton/tehnologiya-progreva-elektrodami. html

Монтаж ПНСВ

Приведем краткое руководство стандартной методики:

  1. Выбираем диаметр провода согласно техкарте, как правило это 1,20-4,0 мм. Если планируется обогрев армированных конструкций, то рекомендуется остановиться на ПВХ изоляции, поскольку она более прочная. Для неармированных конструкций допускается применять провод с полипропиленовым покрытием.
  2. Нарезка производится сегментами равной длины, после чего их сворачивают спиралью (Ø 30,0-45,0 мм).
  3. Укладка спиральных ниток производится в арматурный каркас или их располагают в фанерном или деревянном каркасе (опалубке).
  4. Характеристики ПНСВ не предполагают его работу в качестве обогревателя за пределами бетонной смеси. При таких условиях он сразу выходит из строя. Для исправления ситуации используется любой монтажный провод большего сечения, который подключают к выводам сегмента. Пример как подключить ПНСВ с помощью холодных концов
  5. После того, как опалубку зальют бетонной смесью, дожидаются, пока она начнет схватываться, после чего производится включение трансформаторной подстанции. С ее помощью осуществляют установку необходимой температуры путем увеличения или уменьшения напряжения.

Обратим внимание, принцип и схема укладки ПНСП, ПНБС, ПТПЖ практически не отличается от ПНСВ.

Использование сварочного аппарата в качестве ПТ.

Такой способ подогрева вполне возможен, приведем пример как это можно реализовать такой метод. Допустим, нам необходимо залить плиту объемом 3,7 кубических метра, при температуре на улице – 10°С. Для этой цели потребуется сварочная установка на 200,0-250ампер, клещи для измерения тока, провод ПНСВ, холодные концы и тканевая изоляционная лента.

Нарезаем восемь сегментов по 18,0 метров, каждый такой может выдержать ток до 25,0 А. Мы оставим небольшой запас и возьмем для подключения к сварочному аппарату на 250,0 А восемь таких сегментов.

К каждому выходу отрезка подсоединяем на скрутке монтажный провод (подключаем холодные концы). Производим укладку ПНСВ, ее схема будет приведена ниже. Соединение холодных концов (плюс и минус отдельно) желательно делать при помощи клеммника, размещенном на текстолите или любом другом изоляционном материале.

Подключение ПНСВ к сварочному аппарату

Завершив заливку, подключаем прямой и обратный выход аппарата (полярность не имеет значения), предварительно выставив ток на минимум. Проводим измерение тока нагрузки на отрезках, он должен быть порядка 20,0 А. В процессе нагрева сила тока может немного «проседать», когда это происходит, увеличиваем ее на сварке.

Блок: 6/9 | Кол-во символов: 2497
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Использование предварительно разогретого раствора

Метод разогрева бетонной смеси до выполнения работ по бетонированию – наиболее простой. Технологический алгоритм предусматривает следующие операции:

  • нагрев бетонного раствора на стадии смешивания компонентов;
  • заливку нагретой смеси непосредственно на участке работ.

Для практической реализации данной технологии производят специальные расчеты, направленные на определение рабочей температуры.

При этом учитывают:

  • количество заливаемого бетона;
  • время на транспортировку и заливку;
  • температуру окружающей среды.

При отклонениях в расчетах осуществляют дополнительный нагрев любым из известных методов.

Блок: 7/8 | Кол-во символов: 653
Источник: https://pobetony.expert/stroitelstvo/progrev-betona

Плюсы и минусы ПНСВ

Прогревать таким способом бетон довольно выгодно. Это объясняется как низкой стоимостью провода и относительно небольшим расходом электричества. Отдельно необходимо отметить устойчивость проволоки к щелочному и кислотному воздействию, что позволяет использовать данный способ при добавлении в смесь различных присадок.

Основные недостатки:

  • сложность расчетов при расчете длины провода;
  • необходимость использования ПТ.

Понижающие станции стоят довольно дорого, а учитывая длительность процесса брать их в аренду не выгодно (такие услуги обходятся в 10% от себестоимости изделия). Использование сварочных аппаратов делает возможным обогрев небольших конструкций, но поскольку она не рассчитана на такой режим работы, выход ее из строя и последующий дорогостоящий ремонт довольно вероятны.

Блок: 7/9 | Кол-во символов: 809
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Заключение

Принятие решения по выбору оптимального способа разогрева требует профессионального подхода. Важно изучить технологические особенности каждого способа и определить экономическую целесообразность его применения. Рекомендации профессионалов помогут разобраться в достоинствах и недостатках применяемых технологий нагрева.

Originally posted 2017-12-26 18:13:05.

Блок: 8/8 | Кол-во символов: 370
Источник: https://pobetony.expert/stroitelstvo/progrev-betona

Монтаж секционного обогревочного кабеля

Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

  • В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:
  1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
  2. Утеплить опалубку.
  • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
  • Защита кабеля позволяет приматывать его к арматуре.
  • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
  • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
  • Между разными контурами должно быть не менее 40,0 мм.
  • Запрещено пересечение греющих проводников.

Блок: 8/9 | Кол-во символов: 1447
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Преимущества и особенности сегментированного кабеля

К несомненным положительным качествам продукции данного типа следует отнести:

  • Для организации прогрева бетона при помощи не требуется наличие дорогостоящего дополнительного оборудования (ПТ).
  • В отличие от сушки электродами вероятность поражения электричеством минимальна.
  • Легкий монтаж и несложный расчет длины сегмента.

Особенности:

ВЕТ кабель стоит существенно дороже, чем провод для прогрева бетона ПНСВ. Отечественный КДБС, например производимый компанией ЭТМ в Красноярске, несколько улучшает положение, но не намного. Именно поэтому данные кабели применяются при возведении небольших бетонных и ЖБТ конструкций.

В качестве заключения.

Мы описали только один способ обогрева бетона, на самом деле их значительно больше. Они будут рассмотрены в других публикациях.

В завершении считаем необходимым ответить на вопрос, неоднократно встречающийся в сети, почему нельзя для прогрева бетона использовать нихромовые провода. Во-первых, это удовольствие было бы очень дорогим, во-вторых, правилами техники безопасности запрещено. Именно поэтому не стоит калькулятор для расчета числа витков нихрома, чтобы сделать обогрев трубы или бетона.

Блок: 9/9 | Кол-во символов: 1194
Источник: https://www.asutpp.ru/provod-dlya-progreva-betona.html

Кол-во блоков: 22 | Общее кол-во символов: 30542
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://betonpro100.ru/tehnologii/progrev-provodom-pnsv: использовано 4 блоков из 5, кол-во символов 7082 (23%)
  2. https://pobetony.expert/stroitelstvo/progrev-betona: использовано 7 блоков из 8, кол-во символов 8581 (28%)
  3. https://www.asutpp.ru/provod-dlya-progreva-betona.html: использовано 7 блоков из 9, кол-во символов 9435 (31%)
  4. https://SpecNavigator. ru/materialy/beton/tehnologiya-progreva-elektrodami.html: использовано 4 блоков из 5, кол-во символов 5444 (18%)

Правила прогрева бетона: расчет, схема, график, методы




Для гражданского, промышленного, а также кустарного (домашнего) строительства при отрицательных температурах существуют различные способы прогрева бетона, позволяющие не останавливать работы на зимнее время. Такие вспомогательные процедуры позволяют не просто продолжать монтажные работы в мороз, но и увеличивают скорость застывания раствора, особенно с добавлением специальных химических ускорителей затвердевания.

Ниже мы поговорим о таких методах, в общем, и один из них (наиболее популярный) рассмотрим в частности, а также продемонстрируем вам видео в этой статье по теме электрического прогрева бетона.

Заливка бетона при минусовой температуре

Всё о прогреве

Какие применяют способы для прогрева

Электромат

  • Самый примитивный способ заливки раствора в зимнее время, это обустройство над площадкой самого обычного шатра из целлофановой плёнки своими руками, где в средине можно установить горящую паяльную лампу или тепловую пушку. Метод предельно прост, только его можно применять только на объектах с небольшой площадью, да и над вертикальными конструкциями сложно соорудить такой купол.
  • Несколько проще в такой ситуации использовать электрические маты, которыми просто накрывают площадь заливки, установив регулятор в нужном режиме, в зависимости от температуры воздуха на улице. Но и здесь есть серьёзный недостаток — электроматы неудобно использовать при заливке больших площадей, к тому же матами можно накрывать только горизонтально расположенные ЖБК, но никак не стены, опоры или колонны.

Ультрафиолетовый излучатель

  • Ультрафиолетовая установка прогрева бетона, пожалуй, наиболее удобная из всех существующих, так как не предполагает контакта с самим раствором, а тепловая интенсивность прибора просто регулируется расстоянием между УФ излучателем и объектом. Ещё одно преимущество такого способа, это возможность греть конструкции любой конфигурации и в любом положении (как в горизонтальном, так и в вертикальном), при этом опалубка не является препятствием. Тем не менее, такой метод используется достаточно редко — для него нужно большое количество обогревателей.

Опалубка с подогревом

  • Ещё один метод создания монолитных железобетонных конструкций в зимнее время, это применение опалубки с подогревом, только применим он исключительно для вертикальных ЖБК (стен, перегородок, опор). Это очень удобно, так как щиты здесь многоразового использования, а нагревательные элементы на них подлежат замене, причём сделать это достаточно просто. Главный недостаток такой опалубки, это очень высокая цена, что, впрочем, окупается при её частом использовании.

Прогрев электродами

  • Для электродного прогрева железобетонных конструкций используется арматура или проволока катанка с сечением от 8 до 10 мм и понижающего трансформатора, но такой метод больше подходит для вертикально стоящих ЖБК. Здесь греются не сами электроды, а влага между ними (кипятильник из двух лезвий работает по тому же принципу), только здесь расстояние между штырями составляет от 60 до 100 см — всё зависит от температуры воздуха. Основным недостатком, несмотря на всю простоту, является очень большое потребление электроэнергии (один электрод потребляет порядка 45-50А), следовательно, стоимость строительства при этом возрастает.

tᶛC во время заливкиНапряжение (В)Расстояние между штырями-электродами (см)Получаемая мощность (кВт/м3)
1234
-5552025
6330
7550
-1055103,0
6525
7540
8550
-1565153,5
7530
8545
9555
-2075204,5
8530
9540

Таблица прогрева

  • В данном случае, чтобы выдерживать нужную температуру, её проверяют каждые два часа и для этого заранее изготавливают специальные скважины. Во время разогрева раствора такое тестирование производится каждый час. Во время прохождения всего процесса необходимо постоянно следить за состоянием паек и контактов.

Провод ПНСВ и понижающий трансформатор

Примечание. ПНСВ (Провод Нагревательный Стальной Виниловая изоляция) может иметь разное сечение и применяется одноразово. После застывания массы он остаётся там навсегда.

Использование понижающего трансформатора

Вышеупомянутые методы прогрева бетона не так популярны, как тот, о котором речь пойдёт сейчас — это использование провода ПНСВ в качестве обогревателя и понижающего трансформатора для преобразования электроэнергии. Суть такого способа заключается в следующем — кабель укладывают петлями в месте заливки раствора, а его сечение будет зависеть от мощности трансформатора и температуры воздуха на улице (в здании), где проводятся работы.

В зависимости от температуры воздуха с понижающего трансформатора подаётся нагрузка на петли и начинается обогрев, но структура бетона при этом не изменяется, зато значительно увеличивается скорость застывания раствора.

Диаметр жилы в мм1,22,03,0
Ом/метр0,150,050,02

Сопротивление ПНСВ зависит от сечения провода

Важно! Перед укладкой ПНСВ в обязательном порядке следует убедиться в целостности провода и его оболочки. Дело  в том, что контроль прогрева бетона осуществляется только в отношении температурного режима, а сам провод, в случае его перегорания, заменить невозможно, так как он полностью погружен в раствор (к тому же, его замыкание может привести к пожару). Поэтому, для таких целей лучше использовать новый материал.

Напряжение от трансформатора (кВ)Сечение (мм2) не болееТип ЖБК (наличие арматурного каркаса)Длина ПНСВ (м)Тип ЖБК (наличие арматурного каркаса)Длина ПНСВ (м)
101,1+9,958,4
151,1+22,8518,9
201,1+39,833,6
101,4+18,915,5
151,4+42,634,93
201,4+75,632,09
102,0+54,646,18
152,0+123,8103,0
202,0+218,2184,7
104,0+148,57373,0
154,0+1009,0841,0
204,0+1974,01495,0

Таблица оптимальной длины петли при разных сечениях провода и типах бетона

Принципиальная схема прогрева бетона

При укладке ПНСВ инструкция требует, чтобы на этом месте не было никакого мусора, который может повредить оболочку, что в свою очередь, приведёт к короткому замыканию и перегоранию кабеля (как мы уже говорили — заменить его невозможно). Кроме того, при создании петли недопустимо делать резкие изгибы и оставлять «барашки», что приводит к излому провода — все повороты следует выполнять плавно.

Сама укладка обычно производится либо «змейкой», как это показано на схеме, либо одинарной петлёй — всё будет зависеть от длины ПНСВ и площади заливаемой конструкции. Нельзя ни в коем случае допускать пересечения греющих проводов друг с другом — оптимальное расстояние между жилами порядка 100 мм, хотя его можно изменять, в зависимости от длины и сечения ПНСВ, а также, от размеров рабочей площадки.

В любом случае греющий провод должен быть полностью залит бетоном (скрутки в том числе), так как на воздухе он будет перегреваться, а в результате сгорит, как изоляция, так и стальная жила. Кроме того, вам следует позаботиться  о том, чтобы защитить трансформатор и, как следствие, всю обогревательную конструкцию, от перепадов напряжения, так как бросок может вызвать резкий перегрев и перегорание.

Понижающий трансформатор КТПТО-80

Чтобы представить наглядно схему подключения, давайте рассмотрим, как это делается в соответствии со СНиП 111-4-80/гл. 11 и ГОСТ 12.1.013-7 — в данном случае задействован понижающий трансформатор КТПТО-80, как на фото вверху.

Данный агрегат, перед сборкой электрической цепи следует занулить, и делается это с помощью четвёртой жилы кабеля питания на зажим N из блока XT6, шунтируя его с металлическим корпусом управленческого шкафа. Заземление производится от ножек-салазок агрегата, где для этого есть специальный болт с гайкой, а контур делают из стального провода, сечением не менее 4 мм.

Принципиальная схема КТПТО-80

По технике безопасности сопротивление изоляции должно быть не менее 0,5МОм, в чём следует убедиться перед подключением, а также нужно осуществить проверку всех скруток и контактных соединений. Затем установите путевые выключатели SQ1 и SQ2 так, чтобы была возможность надёжного замыкания одноименных контактов при открытии крышки кожуха и пульта управления. Кроме того, обязательно проверьте целостность предохранителей на случай КЗ.

Переключатель силового трансформатора устанавливаете в положение 1 (соответственно — 55В), а автовыключатель и SA3 приводите в положение «ВЫКЛ». После всех этих процедур цепь, установленная в бетонной или железобетонной конструкции, подсоединяется зажимами ХТ6 к блоку.

На ввод подаётся питание 380В, проверяем напряжение HL1 и HL3, после чего замыкается QF1 и, используя SB1 (аварийная кнопка «ВЫКЛ») пробуем аварийное отключение. После такого теста делается повторное включение — на KL1 подаём питание кнопкой SB3, после чего срабатывает магнитный пускатель KM1.

Карта прогрева бетона (начальная страница)

В соответствии со СНиП 3.03.01-87 (по нагреву несущих и ограждающих ЖБК при температуре до -40⁰C) используется технологическая карта на электрический обогрев проводами типа ПНСВ. Настоящий документ содержит технические и организационно-технологические решения вопросов по методу проводного обогрева со всеми используемыми техническими и технологическими параметрами, то есть, весь график прогрева бетона.

Температурный лист прогрева

Для контроля над прогревом, а также для возможности прогнозирования качества ЖБК после окончательного затвердевания используют лист прогрева бетона — бланк для которого всегда можно скачать через Интернет. Такие данные позволяют точно выверить время и порядок твердения залитого раствора, то есть, это как бы пошаговое руководство достижения наибольшей прочности.

Контроль или расчет прогрева бетона осуществляют с помощью технического термометра — в залитой массе делают специальные воронки, куда закладывается трубка, а в неё уже опускается термометр. Температуру фиксируют через каждые два часа, а если толщина конструкции не превышает 10-115 см, то это делают каждые 4-5 часов.

Не следует забывать, что при нормальном нагреве ПНСВ — до 80⁰C — температура бетона при прогреве доходит до 40⁰C-50⁰C, и это происходит на морозе!

Использование сварочного аппарата в качестве понижающего трансформатора

В домашних условиях в качестве понижающего трансформатора можно использовать сварочный аппарат мощностью не ниже 250А, как на фото вверху, а сопротивление, следовательно. Количество провода ПНСВ в таких случаях можно рассчитать по формуле R=U/I.

Как правило, показатель U у нас будет 220-230В, и если мы используем агрегат вышеупомянутой мощности, то I=250А. в таком случае R=U/I=220/250=0,88ом и, исходя из этого, можно воспользоваться таблицами для определения нужного сечения и длины провода.

Следует сказать, что погружая ПНСВ в массу бетона, с трансформатором его следует связывать алюминиевым проводом типа АПВ сечением не менее 4 мм, но скрутка при этом должна находиться в растворе.

Об этом моменте мы упомянули не зря — вам придётся соединять два неоднородных металла — сталь и алюминий, следовательно, соединение может оказаться неплотным, что приведёт к искрению, перегреву и перегоранию провода. Но переделать залитую раствором скрутку уже будет невозможно, поэтому, уделите особое внимание этому моменту — от него будет зависеть возможность завершения процесса вообще.

Заключение

В заключение можно сказать, что наиболее низкая стоимость работ по прогреву бетона — в случае с использованием кабеля ПНСВ и понижающего трансформатора, и хотя такой метод достаточно неудобно применять для вертикальных ЖБК, его всё равно иногда используют для экономии средств. Несмотря на сложность укладки провода (занимает много времени), проводной прогрев ЖБ конструкций применяется чаще всего.


Бетонирование для холодной погоды

Погодные условия на стройплощадке — жаркие или холодные, ветреные или тихие, сухие или влажные — могут значительно отличаться от оптимальных условий, предполагаемых при разработке, проектировании или выборе бетонной смеси — или лабораторных условия, в которых хранятся и испытываются образцы бетона. Бетон можно укладывать в холодную погоду при условии принятия надлежащих мер предосторожности для смягчения негативного воздействия низких температур окружающей среды. Текущее определение Американского института бетона (ACI) для бетонирования в холодную погоду, как указано в ACI 306, — это «период, когда более трех дней подряд средняя дневная температура воздуха опускается ниже 40 градусов по Фаренгейту и остается ниже 50 градусов по Фаренгейту еще дольше. чем половина любого 24-часового периода.«Это определение потенциально может привести к проблемам с замерзанием бетона в раннем возрасте.

Весь бетон должен быть защищен от замерзания до тех пор, пока он не достигнет минимальной прочности 500 фунтов на квадратный дюйм (psi), что обычно происходит в течение первых 24 часов. Если бетон замерзает, пока он еще свежий или до того, как он наберет достаточную прочность, чтобы противостоять расширяющим силам, связанным с замерзающей водой, образование льда приводит к разрушению матрицы цементного теста, вызывая непоправимую потерю прочности.Раннее замораживание может привести к снижению предела прочности до 50%. Когда бетон достигает прочности на сжатие около 500 фунтов на квадратный дюйм, обычно считается, что он обладает достаточной прочностью, чтобы противостоять значительному расширению и повреждению в случае замерзания. Если температура воздуха во время укладки бетона ниже 40 градусов по Фаренгейту и ожидается отрицательная температура в течение первых 24 часов после укладки, следует учитывать следующие общие вопросы:

Начальная температура бетона при поставке

В холодную погоду может потребоваться нагреть один или несколько бетонных материалов (воду и / или заполнители), чтобы обеспечить надлежащую температуру бетона при доставке. Из-за количества и теплоемкости цемента использование горячего цемента не является эффективным методом повышения начальной температуры бетона.

Защита при укладке, укреплении и отделке бетона

Воздействие на бетон холодной погоды увеличит время, необходимое для достижения начального схватывания, что может потребовать более длительного присутствия отделочных бригад. В зависимости от фактической температуры окружающей среды для защиты бетонного основания может потребоваться использование ветрозащитных экранов, ограждений или дополнительного обогрева.Также может быть целесообразно отрегулировать состав бетонной смеси с учетом влияния температуры окружающей среды на время схватывания. Это может потребовать увеличения содержания цемента, использования ускоряющей химической добавки или того и другого.

Ветрозащитные полосы защищают бетон и строительный персонал от сильного ветра, вызывающего перепады температуры и чрезмерное испарение. Обычно достаточно высоты шести футов. Ветрозащитные полосы могут быть выше или короче в зависимости от ожидаемой скорости ветра, температуры окружающей среды, относительной влажности и температуры укладки бетона.

Обогреваемые шкафы очень эффективны для защиты бетона в холодную погоду, но, вероятно, являются самым дорогим вариантом. Ограждения могут быть из дерева, брезента или полиэтилена. Также доступны сборные корпуса из жесткого пластика.

В бетонных конструкциях для холодных погодных условий используются три типа обогревателей: прямые, непрямые и водяные. Чтобы избежать карбонизации свежих бетонных поверхностей, следует использовать обогреватели косвенного нагрева. Если бетон не подвергается прямому воздействию обогревателя или выхлопных газов, тогда подойдет обогреватель прямого нагрева.Следует проявлять осторожность, чтобы гарантировать, что рабочие не подвергаются чрезмерному воздействию окиси углерода каждый раз, когда внутри ограждения используется обогреватель. Гидравлические системы передают тепло путем циркуляции раствора гликоля / воды в замкнутой системе труб или шлангов. Типичные применения для гидравлических систем включают оттаивание и предварительный нагрев основания и зоны нагрева, которые слишком велики, чтобы их можно было использовать в ограждении.

Отверждение для получения качественного бетона

Для отверждения требуется не только соответствующая влажность, но и соответствующая температура.Температура бетона при укладке должна быть выше 40 градусов по Фаренгейту с использованием методов, описанных выше, однако продолжительность нагрева зависит от типа обслуживания бетона, от одного дня для высокопрочного бетона, который не подвергается замерзанию. -оттапливают события во время эксплуатации до 20 дней и более для бетонного элемента, который в раннем возрасте будет нести большие нагрузки. В конструкциях, которые будут нести большие нагрузки в раннем возрасте, температура бетона должна составлять не менее 50 градусов по Фаренгейту, чтобы обеспечить снятие опалубки и опалубки и нагрузку на конструкцию.

Ни в коем случае нельзя допускать замерзания бетона в течение первых 24 часов после его укладки. Поскольку гидратация цемента является экзотермической реакцией, бетонная смесь выделяет некоторое количество тепла самостоятельно. Защита этого тепла от выхода из системы с помощью полиэтиленовой пленки или изоляционных покрытий может быть всем, что требуется для хорошего качества бетона. Более суровые температуры могут потребовать дополнительного тепла.

Бетон, удерживаемый в форме или покрытый изоляцией, редко теряет достаточно влаги при температуре от 40 до 55 градусов по Фаренгейту), чтобы ухудшить отверждение.Однако сушка из-за низкой зимней влажности и обогревателей, используемых в вольерах, вызывает беспокойство. Рекомендуется оставлять формы на месте как можно дольше, потому что они помогают более равномерно распределять тепло и помогают предотвратить высыхание бетона. Острый пар, выпущенный в ограждение вокруг бетона, является отличным методом отверждения, поскольку он обеспечивает тепло и влагу. Жидкие мембранообразующие составы можно также использовать в отапливаемых помещениях для раннего отверждения бетонных поверхностей.

Также важно предотвратить быстрое охлаждение бетона по окончании периода нагрева. Внезапное охлаждение бетонной поверхности при теплом помещении может вызвать термическое растрескивание. Методы постепенного охлаждения бетона включают в себя ослабление форм при сохранении покрытия пластиковым листом или изоляцией, постепенное уменьшение нагрева внутри корпуса или отключение тепла и обеспечение медленного уравновешивания корпуса с температурой окружающей среды. Для массивных конструкций может потребоваться несколько дней или даже недель постепенного охлаждения, чтобы снизить вероятность термического растрескивания.

Как защитить бетон во время холодной погоды

Есть три основных цели бетонирования в холодную погоду: 1) защитить только что уложенный бетон от замерзания в раннем возрасте, 2) защитить бетон, чтобы обеспечить соответствующее развитие прочности, и 3) защитить бетон от термический удар и растрескивание в конце периода защиты.

Согласно Руководству ACI 306 по бетонированию в холодную погоду, холодная погода существует, когда температура воздуха упала до или, как ожидается, упадет ниже 40 ° F в течение периода защиты. Период защиты — это время, необходимое для защиты бетона от воздействия холода. (См. Дополнительную информацию об этом определении на боковой панели.)

Беречь от раннего замерзания

Если только что уложенный бетон замерзнет, ​​это может привести к немедленному и необратимому повреждению; последующее отверждение не восстановит свойства бетона.Повреждение происходит из-за того, что при замерзании вода увеличивается в объеме на 9 процентов. Образование кристаллов льда и возникающее в результате расширение пасты может снизить прочность на сжатие и увеличить пористость затвердевшего бетона. Снижение прочности может достигать 50 процентов, если замерзание происходит в первые несколько часов после укладки бетона или до того, как бетон достигнет прочности на сжатие примерно 500 фунтов на квадратный дюйм.

Вновь уложенный бетон должен быть защищен от раннего замерзания до тех пор, пока количество воды для затворения или степень насыщения не будут в достаточной степени снижены в процессе гидратации, термин, используемый для описания химической реакции между портландцементом или вяжущими материалами и водой. .Во время гидратации степень насыщения постоянно снижается, поскольку вода для смешивания соединяется с вяжущими материалами, а бетон становится жестким и твердеющим. Из-за процесса гидратации количество доступной воды для смешивания, которая образует кристаллы льда, постоянно уменьшается, поэтому риск необратимого повреждения в случае замерзания бетона снижается.

Когда нет внешних источников воды, критическая степень насыщения, чтобы один цикл замерзания не приводил к необратимому повреждению бетона, возникает, когда бетон достигает прочности примерно 500 фунтов на квадратный дюйм.При заданных температурах отверждения хорошо разделенные бетонные смеси должны достичь этой прочности в течение 24-48 часов. Поэтому очень важно, чтобы вновь уложенный бетон был защищен от замерзания в течение первых 24-48 часов или до тех пор, пока бетон не достигнет прочности примерно 500 фунтов на квадратный дюйм.

Когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм, он может выдержать один цикл замораживания-оттаивания без повреждений, если бетон является воздухововлекающим и не подвергается воздействию внешнего источника воды. Для воздействия повторяющихся циклов замораживания и оттаивания новый бетон должен достичь прочности не менее 3500 фунтов на квадратный дюйм или 4000 фунтов на квадратный дюйм, если он будет подвергаться повторяющимся циклам замораживания и оттаивания и химикатов для борьбы с обледенением. Чтобы избежать повреждений в раннем возрасте из-за холодной погоды, защитите бетон как можно скорее после укладки, уплотнения и отделки.

Температура и периоды защиты

Для защиты от замерзания в раннем возрасте поддерживайте соответствующую температуру бетона, указанную в строке 1 таблицы 1, в течение периодов времени, указанных в строке 1 таблицы 2.Бетон с ускоренным схватыванием может быть получен путем включения ускоряющих химических добавок, уменьшения водоцементного отношения материала (Вт / см), увеличения содержания цемента, уменьшения количества дополнительных вяжущих материалов или замены обычных цементов на цементы типа III (высокий -раннепрочно) цемент. Минимальные температуры бетона в строке 1 таблицы 1 являются функцией минимального размера секции, потому что чем массивнее секция, тем медленнее она теряет тепло.

Согласно строке 1 в таблицах 1 и 2, минимальная температура бетона при укладке и поддержании составляет 55 ° F для бетонной секции с минимальным размером 12 дюймов, а минимальный период защиты составляет два и один день для нормального схватывания и бетонные смеси ускоренного схватывания соответственно.Строка 1 в таблицах 1 и 2 обеспечивает минимальную температуру бетона и продолжительность, чтобы вода для смешивания во вновь уложенном бетоне не замерзла.

В строках 2, 3 и 4 таблицы 1 указаны минимальные температуры бетона в смеси для указанных температур воздуха. По мере снижения температуры воздуха рекомендуемые температуры бетонной смеси повышаются, чтобы компенсировать потери тепла между смешиванием и укладкой бетона. Рекомендации по температуре смеси помогают обеспечить достижимую минимальную температуру бетона при размещении и поддержании (строка 1, таблица 1).

Защитите, чтобы обеспечить достаточный прирост силы

Скорость затвердевания и набора прочности бетона зависит от температуры бетона. Низкие температуры бетона снижают скорость гидратации и, следовательно, замедляют рост прочности. Чтобы вновь уложенный бетон приобрел необходимую прочность для безопасного снятия опалубки, опор и перекладин, а также для безопасной загрузки конструкции во время и после строительства, необходимо поддерживать адекватную температуру бетона в течение периода защиты или отверждения.

Если есть требования к прочности в раннем возрасте, используйте Таблицу 2, чтобы определить минимальные периоды защиты для следующих условий эксплуатации: 1) без нагрузки, без нагрузки; 2) без нагрузки, без нагрузки; 3) частичная нагрузка, выставленная; и 4) полная нагрузка. В зависимости от требований к нагрузке и условий воздействия может потребоваться увеличить период защиты сверх минимумов, перечисленных в строке 1 таблицы 2

«Без нагрузки, незащищенный» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и не будет подвергаться воздействию замерзания при эксплуатации.«Без нагрузки, незащищенный» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и будет подвергаться воздействию низких температур в процессе эксплуатации. «Частичная нагрузка, подверженная воздействию» означает, что бетонный элемент будет нести нагрузки, меньшие, чем доступная несущая способность для раннего возраста в течение периода защиты, и будет подвергаться воздействию низких температур в процессе эксплуатации. Элементы, которые требуют перешоривания для несения строительных нагрузок до достижения указанной прочности, имеют рабочее состояние «Полная нагрузка» и обычно требуют от подрядчика определения прочности бетона на месте.

Например, условие эксплуатации бетонного покрытия для стоянки толщиной 6 дюймов на коммерческой строительной площадке, которое будет подвергаться воздействию зимних условий и отлито из бетона с ускоренным схватыванием, будет «частичная нагрузка, незащищенное» и требует минимальной защиты. срок 4 дня. Согласно строке 1 таблицы 1, минимальная температура бетона 55 ° F должна поддерживаться в течение четырехдневного периода защиты.

Методы защиты

Методы поддержания минимальных температур, которые размещены и поддерживаются, как показано в строке 1 таблицы 1, включают изоляцию (одеяла и плиты), системы обогрева, такие как электрические одеяла и системы водяного отопления, неотапливаемые или обогреваемые корпуса или комбинацию этих методов.

Изоляция является наиболее экономичным средством поддержания адекватных температур отверждения, поскольку в этом методе используется тепло гидратации или тепло, генерируемое химической реакцией между цементом и водой. В зависимости от массы бетона, содержания цемента и условий окружающей среды (например, температуры воздуха и ветра) изоляция обычно может поддерживать адекватную температуру отверждения, улавливая тепло гидратации.

Как можно скорее накройте бетон одеялом, чтобы уловить как можно больше тепла гидратации.Улавливание раннего тепла гидратации поможет поддерживать температуру отверждения, но также способствует гидратации, которая, в свою очередь, дает дополнительное тепло. Обязательно защитите углы и поверхности, поскольку эти области наиболее подвержены замерзанию и повреждению в раннем возрасте.

В экстремальных зимних условиях иногда тепла гидратации недостаточно для поддержания адекватной температуры отверждения, и требуется дополнительное тепло. Дополнительное тепло можно подавать с помощью электрических бетонных одеял, водонагревателей и обогреваемых шкафов.Конечно, использование дополнительного тепла увеличивает стоимость бетонирования в холодную погоду.

Гидравлические нагреватели обеспечивают циркуляцию нагретой водно-гликолевой жидкости через систему шлангов теплопередачи, размещенных на бетоне или формах. Обычно шланги покрывают бетонными изоляционными покрытиями для улавливания и удержания тепла.

Топочные обогреватели для обогреваемых помещений должны иметь вентиляцию и не должны располагаться таким образом, чтобы непосредственно нагревать или сушить бетон. Свежие бетонные поверхности, подверженные воздействию углекислого газа от невентилируемых обогревателей, могут быть повреждены карбонизацией бетона.Карбонизация происходит, когда углекислый газ реагирует с продуктами гидратации цемента, создавая мягкие и меловые поверхности. Невентилируемые обогреватели внутреннего сгорания также производят окись углерода. Конечно, высокие уровни концентрации этих газов опасны для рабочих.

Защищать от термического удара и растрескивания

В конце периода защиты постепенно снимайте изоляцию или другую защиту, чтобы температура поверхности постепенно снизилась в течение последующих 24 часов. В противном случае поверхность бетона может остыть слишком быстро, создавая температурные градиенты между поверхностью и внутренними частями бетона, и возникающие термические напряжения могут вызвать растрескивание поверхности.Оставьте изоляцию на месте и постепенно уменьшайте количество источников тепла, пока температура бетона не остынет до средней температуры воздуха. Строка 5 в Таблице 1 показывает максимально допустимое падение температуры поверхности в первые 24 часа после окончания защиты во избежание термического растрескивания поверхности.

Предварительное планирование — залог успешного бетонирования в холодную погоду. При разработке следующего плана бетонирования в холодную погоду рассмотрите три основные цели: защитить бетон от раннего замерзания, защитить, чтобы обеспечить достаточный прирост прочности, и защитить от теплового удара и растрескивания.

Список литературы

ACI 301-10 «Спецификации для конструкционного бетона», Американский институт бетона, www.concrete.org

ACI 306R-10 Руководство по бетонированию в холодную погоду, Американский институт бетона, www.concrete.org

Косматка, S.H. и Уилсон, M.L., Проектирование и контроль бетонных смесей, 15 th Edition, 2011, Portland Cement Association, www.cement.org

Укладка бетона в жаркую или холодную погоду

Люди, которые занимаются заливкой бетоном, могут работать почти круглый год на большей части территории страны.Это связано с тем, что либо путем проб и ошибок, либо, читая множество технических журналов, они выяснили, как успешно укладывать бетон, даже если он очень жаркий или очень холодный. Практически всем остальным я бы порекомендовал ограничить конкретные занятия более умеренной погодой. Если на улице так жарко, что все, о чем вы можете думать, это поплавать, я бы посоветовал вам выпить холодного напитка, включить кондиционер и забыть о бетоне. Если на улице так холодно, что вам нужны перчатки, подумайте о том, чтобы провести время перед камином с хорошей книгой.

Если это не дает вам достаточно конкретных рекомендаций, может быть, нам стоит определить, что такое умеренные температуры? Это открыто для обсуждения и связано с другими факторами, но в целом, если температура воздуха составляет от 50 ° F до 90 ° F, вы должны быть в безопасности. Вы можете безопасно укладывать бетон за эти пределы, но вам нужно сделать несколько вещей, чтобы ваша работа не превратилась в кошмар.

Температура воздуха сама по себе не является определяющим фактором при заливке бетона.Температура воздуха, уровень влажности и скорость ветра, температура поверхности, на которую вы укладываете бетон, вода и сухой бетон в мешке — все это играет огромную роль и должно быть принято во внимание. Воздух, ветер и влажность в значительной степени не зависят от вас, но на некоторые другие вы можете влиять. Важно помнить, что температура смешиваемого материала так же важна, как и температура воздуха.

Холодная погода
Если температура воздуха ниже 32 ° F, я бы посоветовал вам дождаться более теплой погоды или позвонить профессионалу.Если вы не хотите поставить палатку с обогревателем или украсть электрическое одеяло супруга с кровати, это приведет только к неприятностям. Если на улице так холодно, что земля промерзла, не заливайте бетон ни при каких обстоятельствах. Самая большая проблема при заливке бетона при температуре воздуха чуть выше нуля — это последующие ночные температуры. В холодную погоду бетон схватывается гораздо медленнее. Очень важно (я повторю это — критически), чтобы бетон схватился до того, как он подвергнется воздействию отрицательных температур.Проблема в том, что когда вода замерзает, она занимает больше места в ледяной фазе, чем в жидкой фазе. Когда вся вода, которую вы использовали для смешивания, замерзает, она расширяется, вызывая растрескивание бетона. Главное — сделать все возможное, чтобы бетон схватился достаточно быстро, чтобы этого не произошло.

Первое, что делают зимой профессионалы — это горячая вода. Если вы используете горячую воду и храните сухой продукт в отапливаемом помещении вашего дома или гаража, пока вы не будете готовы его использовать, это значительно ускорит схватывание бетона.Вы можете купить продукты, предназначенные для быстрого схватывания, например, быстротвердеющий бетон Sakrete. Он не будет схватываться так быстро, как говорится в литературе, если температура воздуха близка к нулю, но схватывается намного быстрее, чем обычный бетон. Также можно купить добавки для ускорения схватывания. Единственное, что здесь беспокоит — это тип ускорителя. Если он содержит хлорид кальция, а ваш бетон будет содержать арматуру или металлическую проволочную сетку, хлориды разрушат его и вызовут ржавчину. Это в конечном итоге приведет к растрескиванию вашего бетона.Когда бетон схватывается, он выделяет тепло. Не то же самое, что жарить яйцо, но есть немного экзотермическая реакция (громкое слово для реакции, которая выделяет тепло, используйте его, чтобы произвести впечатление на друзей). Вы можете использовать это в своих интересах, накрыв бетон (после того, как он застынет) одеялом. Для этого продают одеяла, чтобы вашим детям не приходилось спать на морозе. Вы также можете поставить палатку или прислониться к ней и поставить внутри обогреватель.

Жаркая погода
Если температура воздуха выше 90 ° F, будьте осторожны.Конечно, то, что вы делаете с бетоном, тоже имеет значение. Мы вернемся к этому позже. Кроме того, если дует сильный ветер и низкая влажность, даже 90 ° могут стать проблемой. Проблема с жаркой погодой не в жаре. Ни у цемента, ни у заполнителей нет проблем с температурой. Это не похоже на плитку шоколада на переднем сиденье машины в июле. Дело в том, что верхний слой бетона высыхает намного быстрее, чем нижний. По мере высыхания бетон дает усадку.Это означает, что верх будет сжиматься, а низ неподвижен. В этот момент внутри плиты вспыхивает ваша собственная гражданская война между севером и югом. Будут жертвы.

Чтобы избежать этой агрессии, необходимо поддерживать одинаковую скорость отверждения верхней и нижней части. Есть несколько вещей, которые вы можете сделать до и во время смешивания, и несколько вещей, которые вы можете сделать после размещения. Перед смешиванием храните материал в прохладном месте или, по крайней мере, избегайте попадания прямых солнечных лучей. Затем используйте самую холодную воду, которую найдете.Компании по производству готового бетонного бетона фактически используют лед, чтобы заменить всю или большую часть воды, чтобы замедлить схватывание. После того, как вы уложили бетон и он застыл, вам нужно поддерживать плиту во влажном состоянии. Это можно сделать несколькими способами. Вы можете периодически опрыскивать плиту из шланга, включать разбрызгиватель мелкодисперсного тумана, накрывать плиту влажной мешковиной или химикатами, предназначенными для того, чтобы вода не испарялась так быстро. При очень высоких температурах, очень низкой влажности или сильном ветре вы можете делать это в течение нескольких дней.Почти все в этой дискуссии о жаркой погоде направлено на то, чтобы кто-то заливал плиту. Если вы смешиваете бетон и кладете его в яму, чтобы поддержать столб ограждения настила, жаркая погода обычно не проблема. Если бетон схватывается слишком быстро, чтобы его можно было уложить в отверстие, тогда используйте холодную воду для замешивания или лед.


Назад в блог

Монтаж перекрытия на грунте | | Теплый пол своими руками

Введение

Плита на уровне грунта — это любая бетонная плита, уложенная на выкопанный грунт.С точки зрения лучистого отопления не имеет значения, находится ли плита на самом деле «на уровне» или залита на несколько футов ниже уровня земли как часть полного фундамента. Посмотрите наше видео «Как установить тепловые трубки излучающего пола в плиту на уровне земли» и прочтите эту страницу, чтобы получить полное описание.

На фотографиях ниже показаны различные этапы монтажа перекрытия на уклоне

.

Факт остается фактом: установка излучающих труб внутри бетонной плиты, вероятно, является самым простым, наиболее экономичным и высокопроизводительным приложением науки.Тепловые преимущества непревзойденные. Практически любая бетонная заливка должна содержать излучающие трубы… даже если у вас нет ближайших планов по обогреву помещения. В конце концов, вы можете передумать позже и пожалеть об упущенной возможности. Для большинства применений трубы и коллектор относительно недороги, а механические компоненты могут быть установлены даже спустя годы.

Конечно, из правил всегда есть исключения. Сарай для дров или навес для хранения с бетонным полом может оказаться ненужной тратой труб.Но даже в этом случае вам следует долго и серьезно подумать о возможности преобразования этих областей в отапливаемое пространство в будущем. Я говорю это, потому что часто мы работаем с людьми, которые сталкиваются с задачей заливки новой плиты с помощью труб поверх уже существующей плиты… а они заливали существующую плиту всего несколько лет назад. Насколько проще было бы установить НКТ в исходную плиту!

Но если вам посчастливилось планировать оригинальную заливку, процедура проста.Фактически, основы стандартной заливки остаются прежними. Сначала идет уплотненная основа из заполнителя, затем полиэтиленовый пароизоляционный слой толщиной 6 мил, затем изоляция, затем арматура или проволочная сетка, или и то, и другое.

Фаза изоляции имеет решающее значение для теплого пола. В основном нагретые плиты излучают наружу, а не вниз, поэтому изоляция краев плиты является наиболее важной. Помните, что ваша плита будет иметь температуру около 75 градусов по Фаренгейту. Любая более холодная поверхность, соприкасающаяся с плитой, будет пытаться украсть ее тепло.Если вы заливаете фундамент стены, изолируйте между плитой и стенами. Чтобы установка выглядела более аккуратно, обрежьте верхний край пенопласта под углом 45 градусов, чтобы бетон стекал к фундаментной стене и скрывал пену.

Как утеплить плиту, зависит от суровых зим. В более низких, более теплых широтах отлично подойдет пена XPS толщиной 1 дюйм (экструдированный пенополистирол, т. Е. Розовая или синяя плита). В более холодных регионах используйте 2 ″ XPS.

Обратите внимание на вертикальную изоляцию краев фундамента.Нагреваемые плиты теряют тепло как наружу, так и вниз.

Изоляция излучающей плиты

Деталь изоляции на излучающей плите

Существует много способов изолировать излучающую плиту, но деталь справа показывает часто используемый метод. Так как плита будет примерно на 5 градусов теплее комнатной температуры, плита на 75 градусов является довольно распространенным явлением. Очевидно, что любая более холодная поверхность, находящаяся в непосредственном контакте с плитой, будет пытаться украсть ее тепло, поэтому тепловой разрыв значительно снижает эту теплопередачу.

Конечно, во многих ситуациях желателен нисходящий поток тепла как средство создания «радиатора» для защиты помещения в случае серьезного отключения электроэнергии или механического отказа. Плите с таким радиатором может потребоваться несколько дней, чтобы полностью остыть.

Примечание: Многие наши клиенты спрашивают нас об альтернативных изоляционных материалах для плит, таких как «сетчатые» панели, излучающая фольга, изоляция пузырькового типа и тонкие пенопласты различных типов, покрытые пароизоляцией. По общему признанию, эти альтернативные материалы имеют два явных преимущества перед «синей», «розовой» или «фиолетовой» картоном, т.е.е. упомянутый выше экструдированный полистирол — они дешевле и проще в установке, чем несколько листов жесткого пенопласта.

Хотя панели Pex tubing «Grid» могут немного облегчить установку pex, при использовании этих продуктов есть несколько недостатков. Некоторые изолированные системы панелей «Grid» или модульные конструкции панелей изготавливаются из пенополистирола (EPS), который может впитывать влагу и терять свои изоляционные свойства. Самая распространенная «голубая, розовая или пурпурная» плита, пенополистирол (экструдированный пенополистирол) — очень хороший изолятор, не впитывающий влагу.Использование этих панелей типа «решетка» может ограничить расстояние между трубопроводами и затруднить поддержание одинаковой длины контуров. Панели с «сеткой» определяют расстояние и исключают возможность «подгонки под размер», которую предлагает обычный пенополистирол XPS (экструдированный полистирол). Это может привести к тому, что идеально хорошие трубки Pex будут обрезаны и выброшены. Эта практика не только приведет к сокращению зоны необходимого pex (меньшей тепловой мощности), но теперь требует регулировки клапана для надлежащего выравнивания потока из-за неравномерной длины контура.

Светоотражающий материал не эффективен при использовании плит (тепловой массы), так как он наиболее эффективно работает в ситуации с воздушным зазором, как при установке балок перекрытия или для стен и потолков. Другая проблема заключается в том, что минеральные свойства бетона (могут / будут) в конечном итоге ухудшить фольгу из-за электролиза, вызванного неодинаковым содержанием минерала / металла, это относится как к плитам «на уровне качества, так и к подвешенным».

Хотя пузырчатая пленка и тонкая изоляция из пенопласта обходятся дешево, клиенты жалуются на их характеристики при использовании под плитами.

Для справки, компания Radiant Floor не продает изоляцию для перекрытий любого типа. Наше мнение основано на отзывах клиентов и собственном опыте. Мы рекомендуем экструдированный полистирол.

Итак, после того, как вы сделали изоляцию в соответствии с вашей ситуацией, установите арматуру и / или проволочную сетку и используйте арматурные стяжки, чтобы прикрепить излучающие трубки к сетке. Если, как и для большинства плит, вам требуется более одного контура труб, вам необходимо установить коллектор для плит в удобном месте по периметру заливки.Коллектор для плит поставляется в фанерном ящике, который служит формой, вокруг которой вы заливаете бетон. Убедитесь, что распределительная коробка установлена ​​вертикально. Позже, когда заливка будет завершена, и вы откроете комплект для проверки давления с верхней части коллектора, вы захотите, чтобы ваши подающая и обратная трубы торчали ровно и прямо. По возможности установите коллектор для перекрытий очень близко к источнику тепла, чтобы линии подачи и возврата от источника тепла были короткими и легкими.

Наш многоконтурный коллектор включает шаровые краны для каждого контура pex, так как это также обеспечит лучшую продувку при заполнении системы.Равномерная длина pex — лучший способ обеспечить равномерный баланс и нагрев. САМЫЙ точный способ сбалансировать вашу систему (с неравномерной длиной) — это измерить температуру подачи и возврата каждого контура pex. Более короткие длины потребуют большего сопротивления, чтобы уравновесить поток при балансировке с наибольшей длиной. Наилучший способ обеспечить надлежащее выравнивание потока — это равные длины контуров.

Мы включаем (полнопроходные) шаровые краны в нашу конструкцию с несколькими контурами / контурами. Эти клапаны устанавливаются для каждого контура / контура pex для заполнения и продувки отдельных участков.

В некоторых доступных сегодня коллекторах контура / контура используются механические расходомеры, балансировочные клапаны или устройства настройки контуров. Мы не рекомендуем их из-за их удушающей конструкции (с датчиком потока)… даже при их настройках «Широко открытое» сопротивление в этих клапанах очевидно.

Механические расходомеры работают, считывая поток через движение жидкости, и измеряют поток как количество жидкости, проходящей через расходомер. Это движение измеряется за счет конструкции сопротивления, которая препятствует потоку и увеличивает сопротивление / давление напора.Другой недостаток расходомеров механического типа для измерения воды заключается в том, что они могут более легко засоряться, когда жидкость грязная, содержать твердые частицы и создавать повышенное ограничение потока и т. Д. Это может привести к увеличению проблем с обслуживанием. Механические водомеры тоже плохо работают при малом расходе воды. Насос зоны может не преодолеть это напорное давление из-за сопротивления, создаваемого этим сопротивлением. (Тогда) может возникнуть необходимость в увеличении размера насоса зоны, ИЛИ размер подающей и обратной линий может быть увеличен, чтобы уменьшить эту (потенциальную) проблему.Размер / модель насоса для каждой зоны определяется объемом зоны и трубопроводом подачи и возврата,… Это основано на использовании меди 3/4 дюйма для зон с несколькими контурами, для большего объема зоны может потребоваться 1 дюйм подачи и возврата, опять же общая зона объем диктует это требование. У каждого типа расходомера есть свои специфические области применения и ограничения по установке. Не существует универсального расходомера, подходящего для всех.

Наши результаты подтверждают ранее заявленную информацию и основаны на многолетнем опыте работы в магазинах и на местах, а также на отзывах клиентов посредством диагностики неисправностей.

В зависимости от того, какой размер трубки вы используете (7/8 ″ PEX или ½ дюйма PEX), вы разместите трубку либо на 16 дюймов по центру, либо на 8 дюймов по центру соответственно. Имейте в виду, что пока вы закручиваете трубку взад и вперед, вверх и вниз по плите и так далее, вы не будете пытаться сделать в трубке изгиб размером 16 дюймов. Фактический изгиб, вероятно, будет ближе к радиусу 24 дюймов… в зависимости от того, устанавливаете ли вы трубку в теплый летний день или прохладный осенний вечер.Другими словами, тепло означает гибкость. Но какой бы ни была температура, просто позвольте трубке принять естественный изгиб. Перед тем как начать, вы можете поэкспериментировать с отрезком трубки длиной 4 фута. Медленно начинайте сгибать, пока не дойдете до точки изгиба. Это даст вам некоторое представление о том, насколько крутыми могут быть изгибы. Затем, позже, при прокладке контуров и после широкого удобного изгиба, вы можете начать размещать трубки примерно на 16 дюймов по центру на прямых (8 дюймов по центру для 1/2 дюйма PEX).

На трубках Pex

Radiant Floor Company нанесена размерная отметка через каждые 5 футов, чтобы вы знали, какую длину / положение вы находитесь в этой точке рулона, когда вы выкладываете трубку Pex. Когда вы находитесь на расстоянии от 40 футов до 50 футов (обратного конца) от коллектора контура, рекомендуется выполнить обратное соединение с коллектором контура, а затем снова включить Pex, чтобы не закоротить, или долго, когда вы достигнете конца длины. Запуск Pex таким образом также обеспечит равную длину, когда будет выполнено окончательное (обратное) соединение каждой петли Pex с коллектором.

Монтаж плиты «Радиатор»
Монтаж плиты «Радиатор»

При установке двух плит выше используются трубы PEX 7/8 ″, 16 ″ по центру. Обратите внимание на широкие и удобные изгибы, а затем на расстояние между центрами 16 дюймов на прямых участках. Обе эти установки использовали вариант «теплоотвода», т.е. центральные 30% плиты оставались неизолированными. В областях, подверженных длительным перебоям в подаче электроэнергии, такой подход может дать плите очень долгое «тепловое колебание», сохраняя тепло в массе под плитой.Большая тепловая масса защищает дом от замерзания даже после нескольких дней без системы отопления.

Плита для мастерской будущего с изоляцией, проволочной сеткой и 7/8 ″ PEX.

Оберните трубку петлей любым удобным способом, соблюдая необходимый интервал. Заходите примерно в 6 ″ от периметра. Это нормально, если вы не сделаете штабель труб такой толщины, что он может подняться над поверхностью плиты. Вы видите, что это не лучшая идея!

Трехконтурная коллекторная система

Изображенная здесь трехконтурная система представляет собой обычно используемый образец компоновки для типовой укладки перекрытия на горизонтальном уровне.Хотя это совершенно нормально, а иногда и необходимо, пересекать одну трубку над другой во время компоновки трубок, обратите внимание, как эта простая конфигурация размещает каждую петлю внутри своего соседа, начиная с внешних соединений коллектора и продвигаясь к центру.

После того, как трубопровод будет спущен и все соединения выполнены с коллектором, установите на место переднюю крышку коллекторной коробки и увеличьте давление в системе до 50 фунтов на квадратный дюйм. Подождите несколько часов или на ночь. Иногда воздух в трубке остывает, и давление в несколько фунтов теряется.Однако, если манометр показывает падение более чем на 5 фунтов на кв. Дюйм, проверьте трубку на предмет утечек. В большинстве случаев соединения с коллектором нужно немного подтянуть. Если это не решит проблему, осмотрите трубку на предмет повреждений. Острый кусок проволочной сетки мог проткнуть трубку во время установки. Редко, но бывает.

При обнаружении прокола используйте ремонтную муфту или, если этот метод нарушает ваше чувство совершенства, замените этот контур трубки.В большинстве случаев замена всей цепи стоит менее 200 долларов. Это будет стоить всего несколько копеек, если вы сможете вырезать поврежденную секцию и повторно использовать трубы позже при установке балок перекрытия.

Также хорошей идеей будет набить немного поролона, газет, старую тряпку или что-нибудь еще вокруг трубки, где она входит в распределительную коробку. Таким образом, если ваш бетон будет необычно жидким, он не сможет протечь в коробку и коснуться медного коллектора.

После проверки системы на отсутствие утечек снизьте давление до 25 фунтов на квадратный дюйм.Установив манометр на 25 фунтов на квадратный дюйм, вы получите визуальную индикацию того, что система удерживает давление во время самой заливки. В случае падения давления найдите источник утечки и либо используйте ремонтную муфту, либо сформируйте вокруг поврежденного участка и отремонтируйте его позже.

Только помните, что поломки при заливке случаются редко. Трубки не являются хрупкими и в большинстве случаев расположены на расстоянии 16 дюймов друг от друга. Между спусками трубопровода достаточно места для прогулок. Если бетон нужно катать по полу, просто положите несколько фанерных досок, чтобы распределить вес и защитить трубы.

И хотя мы говорим о подготовке к заливке, это было бы идеальным временем для установки «гильзы датчика», если для управления зоной используется датчик температуры пола вместо стандартного настенного термостата.

«Сенсорная гильза»

«Сенсорная втулка», установленная в коллекторной коробке

Вкратце, датчик температуры пола — это небольшой термистор, который контролирует фактическую температуру пола вместо температуры воздуха в зоне, нагреваемой плитой.Это предпочтительный метод контроля, если второй источник тепла передает тепло в зону. Типичным примером является излучающая зона с часто используемой дровяной печью. Другой вариант — принудительный воздуховод, дующий в лучистую зону. Очевидно, что если бы температура воздуха регулировала лучистый пол, он никогда бы не включился, когда были включены другие обогреватели. Воздух будет теплым, но пол останется холодным.

Благодаря датчику пола, контролирующему зону излучения, независимо от температуры воздуха в помещении, пол поддерживает любую желаемую базовую температуру, а другие источники тепла, если они используются, могут компенсировать разницу.

Итак, при установке термистора датчика температуры пола никогда не встраивайте сам термистор в бетон. Вместо этого возьмите 10-футовый кусок трубки PEX, заткните один конец и вставьте эту «гильзу датчика» в плиту. Позже вы можете вставить термистор во встроенную трубку. Это гарантирует доступ к термистору в будущем и упростит замену.

Агрегат для опрессовки

Узел для испытания давлением 5-петлевой коллектор

После завершения заливки узел для испытания под давлением, который вы видите здесь, снимается.С помощью паяльной горелки просто снимите верхнюю часть коллектора и выбросьте ее (предварительно не забудьте сбросить давление внутри коллектора). Это оставит две вертикальные трубы, торчащие над уровнем плиты… ваши линии подачи и возврата. Сами соединения остаются ниже уровня плиты в «колодце коллектора». Они полностью доступны, не тронуты бетоном и защищены от возможных повреждений при будущем строительстве.

На фотографии выше справа показана другая работа с застегнутым коллектором перекрытия, готовым к заливке.Обратите внимание на изоляцию из стекловолокна вокруг трубки. Обрывки пенопласта, газет или тряпки также служат для предотвращения попадания бетона в коробку и соприкосновения с медным коллектором.

Манометр

Эта система была испытана под давлением 50 фунтов на квадратный дюйм, но через несколько часов потеряна примерно 3 фунта на квадратный дюйм. Это обычное явление и возникает, когда воздух в трубке охлаждается, особенно в течение ночи. Однако, если давление упадет более чем на 5 фунтов на квадратный дюйм за тот же период времени, проверьте герметичность. Чаще всего соединения просто нужно подтянуть.

Заливка плиты

Перемещение бетонного насосного агрегата над установленной излучающей системой
Заливка плиты вокруг распределительной коробки
Снятие узла давления с коллекторной коробкой на месте

Коллектор после разлива: Когда коробка выламывается, образуется «колодец коллектора».Благодаря этому соединения остаются видимыми и доступными, но при этом защищены от повреждений во время будущего строительства. Если трубка торчала из плиты, вероятность повреждения открытой трубы PEX намного выше. Также обратите внимание на то, как комплект для проверки давления перекрывает подающую и обратную стороны коллектора. Это временно создает замкнутый контур, позволяющий создать давление в системе. Когда коллектор готов к окончательному подключению к системе отопления, испытательный комплект либо отрезан, либо не обработан, оставив только две вертикальные подающие и обратные трубы, торчащие над уровнем плиты.

При использовании бетононасосной установки лучше поднимать шланг, а не тащить его по трубопроводу. Это особенно верно, когда бетонная компания создает длинный шланг, соединяя вместе более короткие секции с помощью тяжелого стального фитинга, который может раздавить или проколоть трубопровод.

Следующая процедура относится как к коллекторам контура «в штучной упаковке» в конструкции плиты, так и к конструкции «настенный монтаж»:

Когда вы будете готовы подключить коллектор Slab / Loop к компоненту вашей системы (зональный коллектор или Radiant Ready), узел испытания давления снимается.Перед тем, как разрезать и выбросить коллектор, рекомендуется распаять сборку давления. Таким образом, вы можете использовать ящик, чтобы защитить стену за ним от воздействия факела. Сбросьте давление воздуха из коллектора контура (на штоке Шредера / клапана), нагрейте и распаяйте оба колена на узле давления. Два медных шлейфа (затем) становятся соединениями коллектора контура подачи и возврата. Очистите и подготовьте патрубки, так как эти две трубы будут подключены к подающему и возвратному коллектору зоны (для многозонной системы) или к соединениям «Radiant Ready» (для однозонной системы).

Соединение распределителей с несколькими перекрытиями

Схема коллектора с несколькими перекрытиями

Для одной зоны в очень большой плите обычно лучше объединить несколько коллекторов плиты и распределить их по зоне, чем создавать единый коллектор-монстр, который заставляет все цепи начинаться и заканчиваться в одном месте. Этот более разнесенный подход устраняет громоздкую группу сложенных друг над другом трубок, которая является неизбежным результатом единого мега-коллектора.

Хотя это и не самый простой способ разводки контуров плиты, иногда установщик запускает обратную сторону контура плиты рядом со стороной подачи.Другими словами, вместо того, чтобы все подводящие концы располагались на одной стороне коллектора, а все возвратные концы — на другой, трубки будут чередоваться через манифольд следующим образом: подача, возврат, подача, возврат, подача, возврат и т. Д.

Обычно мы сталкиваемся с этим подходом, когда труба была установлена ​​отдельно, то есть без какого-либо коллектора (и без преимущества испытания давлением перед заливкой), и заказчику необходимо подключить несколько контуров спустя много времени после заливки бетона.

Очевидно, что в данной ситуации могут возникнуть трудности. Во-первых, если каждая цепь четко не обозначена, специалист, проводящий водопровод в этой зоне, должен будет определить, какие из случайных трубок, торчащих из плиты, являются «расходными материалами», а какие — «возвратными».

Это заставляет сантехника вдуть воздух в трубку №1, а затем определить, из какой из других трубок он выходит. Надеюсь, у сантехника есть удобный воздушный компрессор. В противном случае им остается нелепая задача — раздувать несколько трубок, все сотни футов в длину, одну за другой и маркировать по ходу.Это не только утомительно для сантехника, но и может поставить в неловкое положение зрителей с ярким воображением.

Коллектор «JF Special»

Итак, приведенное выше является примером того, что мы называем конструктивным коллектором спереди назад. Он соединяет подающие (красные шаровые краны) и обратные линии (только адаптеры), установленные рядом. Дело в том, что компания Radiant Floor может разместить любую схему размещения в любой зоне перекрытия.

Таяние снега

Факт: Таяние снега и льда лучистым теплом потребляет ошеломляющее количество энергии.Просто представьте теплую массу бетона или асфальта, подвергающуюся воздействию элементов и свободно выливающуюся в атмосферу, и вы поймете, что мы имеем в виду. Только массивная и очень дорогая система снеготаяния , работающая на солнечной энергии, могла бы избежать этого почти унизительного расхода ископаемого топлива. Вспашка и лопата могут быть сложнее, но они намного дешевле и, безусловно, более экологически безопасны.

Тем не менее, некоторые особые ситуации могут сделать таяние снега оправданным.Один из наших клиентов, например, использовал таяние снега для хранения бетонных ступеней снаружи в прилегающей квартире в безопасном месте для своей 81-летней матери. Другой покупатель купил дом и в первую зиму обнаружил, что из-за плохого проектирования со стороны какого-то подрядчика опасные ледяные щиты образовывались на интенсивно проходимых участках вокруг его плохо спланированной подъездной дороги. В этих ситуациях потребность в безопасности оправдывает огромное потребление энергии (и затраты) на лучистое таяние снега.

Вот несколько рекомендаций:

Сначала , всегда устанавливайте полиэтиленовый пароизоляционный слой толщиной 6 мил, затем изолируйте как можно больше под и вокруг зоны таяния снега.Таяние снега затруднено. Направьте энергию на растапливание снега, а не на утечку тепловой энергии в землю или в окружающий воздух. Пароизоляция предотвращает перемещение влаги вверх снизу и отвод тепла от трубок.

Второй , используйте пружинный таймер для активации системы вместо термостата, датчика плиты или какой-либо высокотехнологичной системы обнаружения снега. Пружинный таймер с максимальным 12-часовым диапазоном исключит возможность того, что оставит таяние снега включенным, когда в нем нет необходимости! Пружинный таймер требует ручной активации системы , а затем заводится в положение «выключено».

Experience скоро научит домовладельца управлять энергопотреблением системы на основе местных прогнозов погоды, характеристик и условий. Сам пружинный таймер должен получать питание через стандартный выключатель света. Таким образом, если вы включите таяние снега на пять часов, но заметите, что снег растает через три часа, таймер можно отключить вручную. Некоторые клиенты делают следующий шаг, подключая электрическую лампочку к той же цепи, чтобы дать оператору визуальную индикацию того, что таяние снега началось.Опять же, это простые и эффективные способы предотвращения того, чтобы система таяния снега опустошала ваши счета за электроэнергию. Поверьте, вы не хотите топить подъездную дорожку через четыре дня после последней метели.

Третий , как показано на рисунке ниже, всегда помещает излучающую трубку в уплотненный песчаный слой и всегда прокачивает холодную воду по трубке при укладке асфальта. Это буквально предотвратит плавление трубки. Уплотненный песок увеличивает тепловую массу системы для максимальной производительности, а также защищает трубы от повреждений во время укладки асфальта.

Асфальтовая дорожка в разрезе

И, говоря об асфальте, всегда «покрывайте» асфальт соответствующим герметиком. Без надлежащего покрытия растаявший снег просто поглощает незапечатанную подъездную дорожку и отводит тепло от лучистой трубы. По сути, снег тает в микроскопические лужи воды, а не уносится прочь от проезжей части. Затем вся эта жидкость должна быть «выпарена» системой снеготаяния. Конечно, этот сценарий предполагает, что система способна генерировать достаточно тепла, чтобы испарить подъездную дорожку из насыщенного асфальта.Скорее всего, не. Даже хорошо спроектированная система таяния снега должна тратить энергию двадцать четыре часа в сутки, чтобы добиться этого.

Зона стоянки и подъездная дорожка для таяния снега, хорошо подготовленные для дренажа

Четвертый , если возможно, в случае нового строительства сориентируйте подъездные пути и пешеходные дорожки, чтобы использовать естественное солнечное излучение. Это может включать удаление выбранных деревьев для предотвращения затенения или добавление темного оттенка интегрального красителя к залитой бетонной подъездной дорожке. Сделайте все возможное, чтобы получить помощь от солнца.

Пятый , всегда обеспечивайте адекватный дренаж. В конце концов, зачем создавать опасные ледяные щиты из талого снега? Правильно проложенная подъездная дорожка или дорожка должна направлять воду на от в безопасное место. Это предотвращает превращение неудобства снега в ледяную катастрофу. Правильная профилирование также означает, что не должно быть углублений (то есть луж, а затем ледяных пятен) на самой подъездной дорожке.

Когда происходит немыслимое

Ой! … Ваш подрядчик по бетону забыл установить анкерный болт с ключом в заливку плиты.На следующий день он возвращается с каменной коронкой и перфоратором 1/2 дюйма, затем пытается исправить ошибку, просверлив отверстие в новой плите… ..и, как вы уже догадались. Он сверлит прямо в твою лучистую трубку. Чем вы сейчас занимаетесь?

Что ж, после того, как вы успокоитесь (обычно когда-то между тем, как спрятать его тело и вернуться на место работы), вы начинаете трудный процесс раскалывания бетона и установки ремонтной муфты. Вам нужно будет создать некоторое пространство для маневра, потому что трубка должна быть достаточно изогнута, чтобы ремонтная муфта надежно закреплялась на обоих открытых концах PEX без перегиба и дальнейшего повреждения трубки.Четыре-восемь дюймов по обе стороны от пораженного участка, вероятно, примерно справа ( см. Фото ниже ).

Приблизительное количество бетона, которое следует отколоть, чтобы эффективно отремонтировать трубы, поврежденные в затвердевшей плите.

Самовулканизирующаяся резиновая лента защищает латунную муфту от прямого контакта с бетоном.

Затем аккуратно вырежьте поврежденный участок ножом для ПВХ. Вы можете вырезать около 1/2 дюйма трубки и при этом иметь много полиэтилена, чтобы обеспечить очень надежное соединение.

Последний этап заключается в обертывании муфты самовулканизирующейся (прилипающей к себе) резиновой лентой или виниловой лентой. Это предотвращает прямой контакт бетона с латунной муфтой, и эту процедуру следует использовать ЛЮБОЙ раз, когда муфта используется при заливке бетона.

Когда использовать вдвое больше обычного

Когда вы устанавливаете излучающий пол в зонах с высокими потерями тепла, таких как дома с плохой изоляцией или современные жилые дома с большим количеством стекла и высокими потолками, часто бывает необходимо увеличить длину трубы вдвое.В случае 7/8 ″ PEX, обычно устанавливаемого на 16 ″ по центру, трубку следует размещать на 8 ″ по центру. Правильный метод сделать это — запустить PEX, как обычно, 16 дюймов по центру на прямой и приятный удобный радиус 24 дюйма на изгибах. Затем, когда вы покрыли всю зону, просто повторите процесс с самого начала. Таким образом, вы получите два участка трубок, примерно параллельных друг другу, на расстоянии около 8 дюймов друг от друга, но вам не нужно будет пытаться сделать это невероятно крутой изгиб.

Даже такой большой склад может быть одной зоной. Секрет в нескольких, даже контурах НКТ

Все о теплых полах | tekmar

Решение

Решение — отапливать дом с помощью системы лучистого теплого пола. Все поверхности в помещении нагреваются до той же температуры, что и пол. Сюда входят стены, мебель и, конечно же, вы, обитатель здания.

Для обогрева пола в системе лучистого теплого пола используется теплая вода, протекающая по пластиковым трубкам, установленным в полу.Теплая вода циркулирует по полу с помощью насосов и клапанов и нагревается бойлером. Котел можно отапливать природным газом, пропаном, мазутом, электричеством или дровами, а также есть варианты солнечных панелей для нагрева воды для обогрева вашего дома.

Лучистые полы с подогревом обладают рядом преимуществ для комфорта и здоровья. Обеспечить контроль температуры в помещении для каждой комнаты или зоны дома очень просто. Это позволяет поддерживать тепло и комфорт в обычных жилых помещениях, снижая при этом температуру в редко используемых комнатах.Внутреннее зонирование может обеспечить максимальный комфорт для каждой комнаты, давая возможность контролировать ваши затраты на электроэнергию.

Выбор подходящего оборудования

Обычные термостаты с принудительным воздушным отоплением плохо подходят для работы в системах водяного отопления. Эти термостаты включают излучающий пол, когда температура воздуха ниже установленной температуры, и отключаются, когда она выше установленной температуры. В результате пол имеет тенденцию резко превышать температуру нагрева воздуха при обогреве, а затем не включается, пока температура пола не станет низкой.Кататься на этих американских горках может быть довольно неприятно.

Найдите термостат, разработанный специально для теплого пола.

В наших термостатах используется широтно-импульсная модуляция и технология обратной связи по температуре в помещении, чтобы периодически подавать в пол нужную температуру воды, чтобы пол поддерживал постоянную постоянную температуру, тем самым поддерживая оптимальный комфорт.

Они также включают возможность установки датчика температуры пола, который, в свою очередь, предоставляет следующие возможности:

  • Ограничение температуры пола из твердых пород дерева.Полы из твердых пород дерева могут высохнуть и получить повреждения из-за теплового расширения. Термостаты Tekmar позволяют устанавливать максимальную температуру пола. Многие компании, производящие паркетные полы, указывают максимальную температуру 85ºF (30ºC).
  • Поддерживайте минимальную температуру пола. Это особенно полезно в ванных комнатах. Поддерживая температуру пола от 80 до 85ºF (от 25 до 30ºC), пол становится теплым на ощупь.
  • Сохраняйте комфорт в комнатах с большим количеством стеклянных окон, выходящих на южную сторону.Эти комнаты часто перегреваются днем ​​из-за солнечного излучения, проникающего через окна. Обычно это может привести к тому, что светлый пол станет холодным в течение дня. Поддерживая температуру пола близкой к желаемой температуре воздуха в помещении, комната остается комфортной, даже когда солнце садится вечером.

В целях экономии энергии наши термостаты также предлагают возможность создания программируемого ночного графика понижения температуры. Термостат снижает температуру в ночное время, обеспечивая тем самым экономию энергии.Затем термостаты могут использовать функцию оптимального запуска вместе с обратной связью по температуре в помещении, чтобы гарантировать, что настройки комнаты и пола вернутся к температуре, когда вы проснетесь утром.

У нас есть решения для управления котлом, зонирования, эксплуатации систем охлаждения и удаленного доступа в Интернет для вашей системы лучистого теплого пола. Наслаждайтесь максимальным комфортом с системой лучистого теплого пола с термостатами Tekmar.

Thermal Mass устарел. Проводимость — это король.Warmboard, Inc.

Часто термин «тепловая масса» используется при обсуждении лучистого тепла.

Понятие «термальная масса» изначально имело смысл в 1960-х и 1970-х годах, когда возникла тенденция к проектированию домов на пассивных солнечных батареях. Заливка темного цвета из портландцемента или гипсобетона помещалась под окнами, выходящими на юг, и весь день впитывала солнечные лучи. Когда солнце садится, плита будет выделять накопленное тепло в пространство, по существу продлевая выделение солнечного тепла примерно на 12 часов.Эта задержка была преимуществом для этих систем именно потому, что солнце выделяло наибольшее количество тепла примерно за 12 часов до того, как возникла потребность в тепле.

Поскольку пассивная солнечная энергия редко могла обеспечить все тепло в доме, в бетонные плиты часто были встроены трубы, чтобы горячая вода могла нагреть плиту, когда не было достаточного количества накопленного тепла от солнца. Популярность этого гибридного решения росла, и вскоре термины «тепловая масса» и «лучистое тепло» стали синонимами.

Но та же тепловая масса, которая так важна для пассивного солнечного дома, на самом деле является основной причиной жалоб на лучистое тепло — оно слишком медленно.В любом доме требования к отоплению могут быстро меняться, что делает невозможным быстрое реагирование крупномасштабных систем.

Владельцы домов, отапливаемых с высокой массой излучения, часто бывают слишком холодными утром и слишком жаркими днем. Или, если они вернутся в дом после длительного отсутствия, им, возможно, придется подождать день или больше, чтобы в доме установилась комфортная температура.

Хотя история пассивной солнечной энергии с лучистым теплом интересна, учитывая чистый лист бумаги, никто не стал бы проектировать излучающую систему как устройство для аккумулирования тепла.Работа излучающей системы — отводить тепло, а не накапливать его. Поскольку количество тепла, которое должно подаваться излучающей панелью, постоянно меняется, идеальная излучающая система способна регулировать свою тепловую мощность вверх или вниз в режиме реального времени, создавая постоянную и постоянную температуру окружающей среды.

Парадоксально, но системы лучистого тепла и их преимущества часто ассоциируются с массивными системами плит. Однако тот факт, что этот тип системы не сильно различается по производительности, и есть ее ахиллесова пята.В системах с большой массой кондиционируемая температура помещения неравномерна и непостоянна, вызывая взлеты и падения и дискомфорт. С другой стороны, системы теплых полов с высокой проводимостью и малой массой обеспечивают больший комфорт при постоянной температуре.

Помните — главное не масса, а проводимость!

Укладка бетона при наличии тепла

Лето в самом разгаре. Тем из нас, кто работает с бетонными материалами, пора приспособить свой рабочий процесс к разливам в жаркую погоду.Эксперты сходятся во мнении, что идеальная температура для заливки бетона составляет примерно 50-60 ° по Фаренгейту. Поскольку погода непредсказуема и часто не позволяет нам сотрудничать, нам нужно проявлять гибкость и быть готовыми к жарким погодным условиям.

Бетонирование при восходе ртути

Американский институт бетона (ACI) определяет жаркую погоду как:

«Любая комбинация высокой температуры окружающей среды, высокой температуры бетона, низкой относительной влажности, скорости ветра и солнечной радиации».

Эти погодные условия могут отрицательно сказаться на качестве бетона.ACI отмечает, что, хотя эти проблемы в основном возникают в летние месяцы, сильный ветер, низкая относительная влажность и солнечная радиация могут возникать в течение всего года. Итак, понимание процесса бетонирования в жаркую погоду принесет вам пользу круглый год.

При нормальных погодных условиях бетон схватывается за 8-48 часов, достигая 70% прочности примерно за семь дней. Затем требуется до 28 дней, чтобы полностью затвердеть и достичь своей полной прочности. Погодные условия имеют огромное влияние на схватывание и отверждение. При более низких температурах бетону требуется больше времени для схватывания, а кристаллам, образующимся в бетоне, больше времени для затвердевания.И наоборот, более высокие температуры означают, что кристаллы образуются быстрее, что дает меньше времени на укрепление. Например, при температуре 100 градусов по Фаренгейту бетон может застыть всего за два часа.

Вы сможете сэкономить время и деньги, узнав, как жаркая погода влияет на свежеулитый бетон, и по возможности смягчите возможные проблемы.

Эффекты жаркой погоды

Жаркие погодные условия увеличивают испарение поверхностной влаги на свежеуложенном бетоне и ускоряют время схватывания.Испарение может удалить поверхностную воду с залитой плиты; эта поверхностная вода необходима для поддержания гидратации бетона и предотвращения высыхания. Когда скорость испарения высока, как в теплую погоду, это может привести к растрескиванию поверхности или усадке пластика (содержащегося в бетонной смеси) перед схватыванием. Воздержитесь от использования воды для регидратации поверхности, так как это ослабит конечный продукт по мере его испарения и приведет к образованию трещин. Лучше использовать замедлители испарения и вспомогательные средства для отделки, такие как Lythic Day 1 от Solomon Brickform.

Резкие перепады температуры окружающей среды также могут вызвать термическое растрескивание. Например, если в жаркий день заливается бетон, а ночью он быстро остывает, это может вызвать растрескивание или усадку. Увеличение на 20 градусов может сократить время схватывания на 50%. Кроме того, повышение температуры бетона также ускоряет процесс схватывания. При заливке бетона время имеет значение в жаркую погоду.

Возможные проблемы с заливкой бетона при более высоких температурах:
  • Уменьшение времени схватывания затрудняет обработку бетона — это также означает сокращение времени на укладку, уплотнение и отделку бетона — поэтому бригаде приходится работать быстрее
  • Ускорение при потере осадки — это также может привести к потере увлеченного воздуха
  • Пластическая усадка и растрескивание — поскольку влага испаряется слишком быстро, поверхность может треснуть или повредить пластик, содержащийся в цементе
  • Снижение предельной прочности — когда бетон слишком быстро затвердевает на жаре, прочность может снизиться.Бетон, отвержденный при стандартной температуре 70 ° F, будет заметно прочнее, чем плита, отвержденная при температуре 90 ° F.

Сохраняйте хладнокровие в жаркую погоду

Давайте будем реалистами, ни одна из этих потенциальных проблем с жаркой погодой не замедлит вашу следующую заливку независимо от температуры. Но, внося некоторые коррективы в методологию проекта и конкретную композицию, вы можете добиться успешного результата.

Химические добавки

По мере схватывания бетон также быстрее достигает полной прочности.Однако это более быстрое схватывание также может означать меньшую прочность в процессе отверждения. Бетон — это прочность, поэтому добавление химикатов в бетонную смесь может помочь увеличить ее прочность.

Химические добавки используются для ускорения или замедления обрабатываемости, консистенции, долговечности и прочности бетона. В случае проливания в жаркую погоду подумайте о добавлении добавки, замедляющей схватывание. Этот тип добавки может замедлить химическую реакцию, которая происходит в процессе схватывания, давая больше времени для отделки бетона до того, как он схватится под действием тепла.

Вода и лед

Чтобы поддерживать охлаждение бетона в жаркую погоду, температуру внутри бетона можно снизить, используя холодную воду или лед как часть воды для замешивания. Кроме того, опрыскивание заполнителей водой может помочь сохранить бетон прохладным.

Азот жидкий

Вода и лед раньше были наиболее практичными и экономичными методами охлаждения бетона.
В наши дни использование жидкого азота (LIN) может быть более эффективным и экономичным.Преимущества охлаждения с LIN включают: более предсказуемые, постоянные температуры от партии к партии и универсальность (вы можете использовать ее для охлаждения агрегатов, добавления в водную смесь или непосредственно на бетон).

Просто имейте в виду, что LIN не всегда доступен, поэтому вам нужно будет проверить наличие промышленных производств в вашем районе.

Как заливать и отделывать бетон (Hi-Res: ProFinish)

Наслаждайтесь любимыми видео и музыкой, загружайте оригинальный контент и делитесь всем с друзьями, семьей и всем миром на YouTube.

Как подготовиться к заливке бетона?

  • Подготовьте бетонное оборудование и материалы до наступления жаркой погоды.
  • Следите за тем, чтобы земляное полотно и формы оставались влажными, чтобы они не впитывали воду из смеси.
  • По возможности используйте солнцезащитные козырьки и ветрозащитные экраны.
  • Обязательно используйте бетонные материалы, которые хорошо работают при более высоких температурах.
  • Поддерживайте постоянный контакт с поставщиком товарной бетонной смеси и подготовьте все необходимое до прибытия автобетоносмесителя.Не заставляйте грузовик вас ждать!

Избегайте планирования заливки бетона на 100 градусные дни. Если это невозможно, запланируйте доставку в самое прохладное время дня, рано утром или вечером, избегая самой жаркой части дня. Убедитесь, что у вас есть полная бригада, чтобы вы могли укладывать бетон и готовить его как можно скорее. Упростите погрузку автобетоносмесителей на место работы с минимальным временем простоя или без него.

Держите команду гидратированной!

При размещении не забудьте также защитить свою команду от повышенной жары.Убедитесь, что они пьют и имеют достаточно жидкости, планируйте частые перерывы в затененных местах и ​​постоянно ищите признаки теплового стресса.

Следующие шаги после размещения

После укладки бетон следует немедленно удалить и зашпаклевать. Обязательно используйте замедлители испарения, запотевание или запотевание водой — или накройте паронепроницаемым листом перед стяжкой. Это помогает предотвратить быстрое высыхание, образование корки, пластическую усадку и схватывание резины. Временные покрытия, такие как постоянно увлажненная мешковина, могут быть помещены поверх свежего бетона и удалены небольшими участками непосредственно перед отделочными работами.